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Abstract— We present a low-complexity widely separated
multiple-input-multiple-output (WS-MIMO) radar that samples
the signals at each of its multiple receivers at reduced rates.
We process the low-rate samples of all transmit-receive chains
at each receiver as data matrices. We demonstrate that each
of these matrices is low rank as long as the target moves
slowly within a coherent processing interval. We leverage matrix
completion (MC) to recover the missing samples of each receiver
signal matrix at the common fusion center. Subsequently,
we estimate the targets’ positions and Doppler velocities via
the maximum likelihood method. Our MC-based WS-MIMO
(MC-WS-MIMO) approach recovers missing samples and there-
after target parameters at reduced rates without discretization
of the parameter space. Our analysis using ambiguity functions
shows that antenna geometry affects the performance of MC-WS-
MIMO. Numerical experiments demonstrate reasonably accurate
target localization at SNR of 20 dB and sampling rate reduction
to 20%.

Index Terms— Ambiguity function, low-rank data, matrix
completion, target localization, widely separated MIMO radar.

I. INTRODUCTION

DURING the past decade, there has been exten-
sive research interest in multiple-input-multiple-output

(MIMO) radars that employ several transmit (Tx) and receive
(Rx) antennas [1], [2], [3], [4]. MIMO radars are usually
classified as colocated or widely separated depending on the
antenna placement relative to the targets. In a colocated MIMO
(CL-MIMO) radar [3], [5], the antennas are placed close
enough to observe coherent signals reflected from a target
whose radar cross-section (RCS) appears identical to all Tx-Rx
antenna pairs. Unlike phased array radar that transmits a single
waveform, CL-MIMO transmits multiple mutually orthogonal
signals. The waveform diversity can be exploited to achieve
high angular resolution [6], [7], and high-quality parameter
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identifiability [8]. In widely separated MIMO (WS-MIMO)
radar, the distance between any two antennas is much larger
than their distance from the target, resulting in each Tx-Rx
antenna pair seeing a different RCS of the target.

In this paper, we focus on WS-MIMO systems. The spatial
diversity in WS-MIMO is advantageous in detecting targets
with small backscatter and low speed [9], [10]. The angular
diversity provides WS-MIMO a better probability of detection;
however, this comes at a cost of increased minimum required
signal-to-noise ratio (SNR), below which a phased array radar
shows better detection performance [11]. In particular, WS-
MIMO exhibits superior detection of Swerling chi-squared
target models I and III, that are statistically independent from
scan-to-scan, than the CL-MIMO [12]. In an electronic warfare
scenario, a WS-MIMO is capable of maintaining the same
detection threshold as a monostatic radar but with a lower total
radiated power. This decreases the probability of intercepting
the radar’s transmit signal by hostile entities [13].

WS-MIMO radars are similar to traditional multi-static
radars in the sense that they both employ widely separated Tx-
Rx units, but they differ from multi-static radar in the way they
make a decision about the target. Multi-static radar perform a
significant amount of local processing at each receiver, and
they use a central unit to fuse the decisions of the local
units. WS-MIMO radar jointly processes the signals from all
the receivers and makes a single decision about the target.
This joint processing approach is beneficial in detecting a
spatially diverse target that requires probing from different
directions [9], [14], or a stealth target [15]. In the latter case,
when the target becomes unobservable for specific Tx-Rx
pairs, it may escape detection altogether in a multi-static radar
because of local processing at each receiver [16].

Even though a WS-MIMO radar provides superior detection
over the conventional multi-static network, the use of multiple
waveforms in MIMO systems implies the need for several Tx-
Rx radio-frequency (RF) chains, resulting in huge hardware
costs, high energy consumption, and very large computational
complexity [17], [18]. Further, the joint processing of all
receivers requires the transmission of the measurements of
each antenna to the fusion center, thus involving an additional
communications cost. Lately, various techniques have been
proposed to address the problem of reducing the cost of
hardware, energy, and area in conventional MIMO radars (see,
e.g., [19] for a review). These methods exploit the fact that
the target scene is sparse, and the radar processing tasks can
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be modeled as finding sparse solutions to under-determined
linear equations - an aspect addressed by the emerging field
of compressed sensing (CS) [20].

There is a large body of literature on CS-based CL-MIMO
radars that focuses on processing with a reduced number
of signal samples, which is common when using fewer RF
chains. In [21], a theoretical framework for the recoverability
of targets in the azimuth–range and azimuth–range–Doppler
domains via sparse approximation algorithms has been
proposed for a MIMO radar. In [22], the optimal CS
measurement matrix is designed for colocated MIMO radar
by considering coherence of the sensing matrix and signal-to-
interference ratio as optimality criteria. The approach in [23]
combines step frequency with CS in a MIMO radar system to
enable high-resolution range, angle, and Doppler estimation
with narrowband pulses.

In comparison, relatively fewer studies have examined CS
applications to WS-MIMO. The earliest application of CS to
recover direction-of-arrival (DOA) with sub-Nyquist samples
in a WS-MIMO was formulated in [24]. This was later
extended to recovering both position and Doppler velocity of
the targets by reducing only the temporal sampling rate in [25],
[26], and [27]. In [25], CS is used to accurately estimate
the position and velocity of multiple targets in a WS-MIMO
radar. A decoupled approach proposed in [26] efficiently
handles sparse target returns and reduces computational
complexity. Here, the basis matrix columns are reordered to
introduce group sparsity. Then, the target estimation problem
is formulated as a sparse signal recovery task with magnitude
constraints on reflection coefficients, and an ADMM-based
solution is proposed to significantly reduce computational
complexity and enhance accuracy; performance guarantees for
recovery were provided in [28]. A few other studies have
exploited sparsity in WS-MIMO toward power allocation [29],
[30], optimal detectors [31], dictionary learning [32], and
stationary target imaging [33]. In nearly all of these works, the
targets are assumed to be located on an angle-Doppler-range
grid. In practice, target parameters are typically continuous
values the discretization of which may introduce gridding
errors [34].

To avoid the off-grid errors while also maintaining
high resolution, reduced-rate sampling, and low complexity,
predominantly two approaches have been proposed. The first
technique [35] formulates the radar parameter estimation for
off-grid targets using atomic norm minimization [36] and
applies to a CL-MIMO radar. In the second approach, the
signal samples received from an array radar are processed
as data matrices, which, under certain conditions, are low
rank. Then, random temporal sampling at each receiver
results in a partially observed data matrix and the missing
entries are retrieved using matrix completion (MC) methods,
which have been extensively studied [37], [38], [39]. State-
of-the-art in [37] solves matrix completion problem by
minimizing nuclear norm and demonstrates that the missing
data is perfectly recovered from limited observations. In [38],
matrix completion is extended to the noisy case. Theoretical
guarantees in [39] show that the original signal data should
follow the strong incoherence property.

Once the matrix is recovered, conventional methods are
employed for target parameter recovery and estimation. The
MC-based sampling and recovery was first suggested for
volumetric targets in a phased-array weather radar [40] and
later for point targets in a CL-MIMO radar [41], [42], [43],
[44]. In addition to avoiding the grid issue, the MC approach
restores the SNR loss because of subsampling. In particular,
[43] provided recovery guarantees for MC-based CL-MIMO
(MC-CL-MIMO) while corresponding sampling strategies and
waveforms were analyzed in [42].

In this paper, we propose off-grid target recovery using
MC for a WS-MIMO. The different formulation of this
problem, as compared to the CL-MIMO problem makes the
extension of prior work to this scenario non-trivial. In MC-CL-
MIMO [42], the low-rank data matrix is formulated by samples
from all Tx-Rx chains for a single pulse. In MC-based WS-
MIMO (MC-WS-MIMO), we exploit the low-rank structure
of a matrix formed by samples of a single Tx-Rx chain for
all pulses.

Preliminary results of this work appeared in our conference
publication [1], which presented initial simulation results for
the target localization using the maximum likelihood (ML)
approach. In this paper, we also analyze the coherence of
the WS-MIMO data matrix that guarantees recovery with
MC, investigate the WS-MIMO radar ambiguity function
(AF), derive the Cramér-Rao lower bound (CRLB) of WS-
MIMO radar localization, and provide more comprehensive
numerical studies with comparisons to the geometry-based
approach. We show that target parameters can be estimated
with reasonable accuracy at 20 dB SNR even when the
sampling rate is reduced by 20%. Hence, MC offers notable
advantages in improving the accuracy of target localization and
velocity estimation, particularly in scenarios with low signal-
to-noise ratios and reduced sampling rates. Additionally,
the MC-based ML estimation exhibits robustness in target
localization in these settings. Furthermore, the analysis of AF
indicates that the distribution of antennas in WS-MIMO radar
impacts the MC-based recovery. In our study, circularly-placed
antennas are found to have improved localization than other
geometries.

The rest of the paper is organized as follows. In the next
section, we introduce the system model of WS-MIMO radar
in the context of the MC problem. Section IV-A provides
theoretical guarantees for the coherence and recoverability of
the data matrix. In Section III, we present the method for
estimating the target parameters such as location and velocity.
We provide the AF and lower error bounds for our system
in Section IV. We validate our methods through numerical
experiments in Section V and conclude in Section VI.

Throughout this paper, we reserve boldface lowercase,
boldface uppercase, and calligraphic letters for vectors,
matrices, and index sets, respectively. The i-th element of a
vector y is y(i); the (i, j)-th entry of a matrix Y is [Y]i, j ; the
i-th column of matrix Y is yi ; and the i-th row of matrix Y is
Y(i). The set of N -dimensional vectors of complex numbers
is CN . We use IN for the identity matrix of size N × N .
We denote the transpose, Hermitian, conjugate transpose,
modulus and floor operations by (·)T , (·)H , (·)†, || · ||, and

⌊
.
⌋

,
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respectively. The Hadamard (point-wise) and inner products
are denoted by ⊙ and ⟨·, ·⟩, respectively. The notations ∥ · ∥∗

and ∥ · ∥F are reserved for the nuclear and Frobenius norms
of the matrix, respectively. The function max(·) returns the
maximum value of its argument. The cardinality of the set is
given by | · |.

II. SYSTEM MODEL

We introduce the system model of WS-MIMO radar and
show that the data matrix at each receive antenna has a
low-rank structure. We then propose a reduced-rate sampling
scheme at each receive antenna to obtain partially observed
matrices on which we apply MC technique at a fusion center.

A. WS-MIMO Radar

Consider a WS-MIMO radar system with Mt transmit
and Mr receive antennas, located in a two-dimensional
(2)-D) Cartesian coordinate system. We denote the position
vectors of the m-th transmit and n-th receive antennas by

p(m)
t =

[
x (m)

t , y(m)
t

]T
and p(n)

r =
[
x (n)

r , y(n)
r

]T , respectively.
The waveform orthogonality in WS-MIMO radar is achieved
through either time, code, or frequency division multiplexing
(TDM, CDM, or FDM) [45]. In this paper, we employ CDM
to achieve waveform orthogonality. Each transmit antenna
emits a narrowband phase-coded pulse, composed of N
subpulses, during each pulse repetition interval (PRI), TPRI;
its reciprocal is the pulse repetition frequency (PRF). The
baseband waveform of the m-th antenna is [46]

sm(t) =
1√
Tp

N∑
n=1

xm(n)p
[

t − (n − 1)tb
tb

]
, m = 1, · · · , Mt ,

(1)

where xm(n) = e jφm (n), m = 1, · · · , Mt , n = 1, · · · , N is
the phase code, and p(t) is the rectangular subpulse shaping
function with amplitude 1 for duration from 0 to 1. Here, tb
is subpulse duration, and Tp = Ntb is the pulse duration.
The orthogonality implies

∫
Tp

si (t)s∗

j (t)dt = δ(i − j), ∀i, j ,
where δ(·) is the Dirac delta function. The transmit waveforms
are narrowband such that

λ

c
≪

1
B

, (2)

where λ = c/ fc is the operating wavelength of m-th
transmitter, fc is carrier frequency, c = 3 × 108 m/s is the
speed of light, and B is the bandwidth of WS-MIMO radar
system. Each transmitter sends out a pulse train consisting of
Q uniformly spaced known pulses sm(t):

sm,Q(t) =

Q−1∑
q=0

sm(t − qTPRI), 0 ≤ t ≤ QTPRI. (3)

The duration of all Q pulses is known as the coherent
processing interval (CPI).

Assume that the radar target scene consists of K targets
distributed in an area denoted by a set of coordinates S,
sharing the same 2-D plane as the WS-MIMO transmitters and
receivers. The k-th target is represented by its gravity center [8]

whose position vector is denoted as p(k)
=

[
xk, yk

]T moving
at a velocity of ν(k)

=
[
v(k)

x , v(k)
y

]T . The transmit signal is
reflected back by the targets and these echoes are collected
by each receive antenna. For a given spatially diverse k-th
target and m-th-Tx-and-n-th-Rx pair, the radar processor aims
to retrieve following information from the received signals:
reflection coefficient β(k)

mn , wherein we assumed that the target
follows the Swerling I model [47] so that its reflectivity is
constant during the CPI; time delay τ (k)

mn , which is linearly
proportional to the target’s location p(k) as

τ (k)
mn =

∥∥∥p(k)
− p(m)

t

∥∥∥ +
∥∥p(k)

− p(n)
r

∥∥
c

, (4)

and Doppler frequency f k
mn , which is proportional to the

target’s radial velocity ν(k) as

f (k)
mn =

fc

c


〈
ν(k), p(k)

− p(m)
t

〉
∥∥∥p(k) − p(m)

t

∥∥∥ +

〈
ν(k), p(k)

− p(n)
r

〉∥∥∥p(k) − p(n)
r

∥∥∥
. (5)

B. Operating Conditions

We make the following assumptions on the radar operation
and target parameters:

C1 “Unambiguous time-frequency region”: The target
locations are assumed to lie in the unambiguous
region of delay-Doppler plane [0, Rmax] × [0, νmax],
where Rmax =

cTPRI
2 is the maximum unambiguous

range and νmax =
c

f0TPRI
is the maximum unam-

biguous velocity in both x- and y-directions, i.e. the
time delays are no longer than the PRI and Doppler
frequencies are up to the PRF.

C2 “Low acceleration”: The frequency modulation
because of a slow-moving target manifests as a
frequency shift in the received signal. The targets are
slow-moving and have low acceleration so that their
time delays and Doppler frequencies are assumed
constant over a CPI:

2v
(k)
i QTPRI

c
≪

1
B

, i = x, y, (6)

f (k)
mn Tp ≪ 1. (7)

C3 “Constant delays”: The Doppler shifts induced are
small over a CPI under the condition C2 so that
the delay is approximated to be constant. This
allows for the piecewise-constant approximation:
f (k)
mn t ≈ f (k)

mn qTPRI, for t ∈ [qTPRI, (q + 1))TPRI].
C4 “Constant Doppler shifts”: The velocity change of a

target over a CPI is small compared with the velocity

resolution such that
dν

(k)

(·)

dt ≪
c

2 f0(QTPRI)2 , where the
subscript (·) denotes either x- or y-directions.

C5 “Constant reflectivities”: The radar-to-target distance
is large compared with the displacement of the
target during a CPI, allowing the attenuation to be
considered constant over a CPI.

C6 “Unimodular waveforms”: Due to practical hardware
limitations such as amplifiers and analog-to-digital
converters, the waveforms need to be unimodular,
that is, they must maintain a constant modulus.
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C. Receive Data Matrix With Low Rank Structure

The received signal at the n-th receive antenna is

yn(t) =

Q−1∑
q=0

Mt∑
m=1

K∑
k=1

√
Eβ(k)

mnsm
(
t − τ (k)

mn − qTPRI
)

× ej2π
(

fc+ f (k)
mn

)(
t−τ

(k)
mn

)
+ wn(t), (8)

where wn(t) is the additive spatio-temporally white, zero mean
Gaussian noise with variance σ 2

n , and
√

E is waveform energy.
After demodulation and passing the baseband signal through
an anti-aliasing low-pass filter, the received signal at the n-th
receiver for the m-th carrier frequency is

ymn(t) =

Q−1∑
q=0

K∑
k=1

√
Eβ(k)

mnsm
(
t − τ (k)

mn − qTPRI
)

× ej2π f (k)
mn t e− j2π

(
fc+ f (k)

mn

)
τ

(k)
mn

+ wmn(t). (9)

For the sake of simplicity, the term e− j2π
(

fc+ f (k)
mn

)
τ

(k)
mn can be

absorbed into the target reflection coefficient β(k)
mn . Hence,

the baseband received signal at the n-th receive antenna and
transmitted from the m-th transmit antenna is

ymn(t)

=

Q−1∑
q=0

K∑
k=1

√
Eβ(k)

mnsm
(
t − τ (k)

mn − qTPRI
)
ej2π f (k)

mn t
+ wmn(t),

(10)

where wmn(t) is the noise term.
We denote the maximum and minimum ranges of all

possible target locations in the coordinate set S with respect
to the m-th transmit and n-th receive antennas as R(max)

mn and
R(min)

mn , respectively. Denote the Nyquist sampling interval by
Ts so that N samples of the pulse duration (Tp = N Ts)
are obtained. For each pulse received, we set the sampling
window length at each receive antenna as N +L(max)

mn to collect
unambiguous samples for every possible location in an area
covered by S, where L(max)

mn =

⌊
R(max)

mn −R(min)
mn

cTs

⌋
. Define L(k)

mn =⌊
R(k)

mn−R(min)
mn

cTs

⌋
, where R(k)

mn = cτ (k)
mn is the distance corresponding

to the total time of flight from the m-th transmitter to the k-th
target and back from the same target to the n-th receiver.

Define CL(k)
mn

=

[
0N×L(k)

mn
IN 0

N×

(
L(max)

mn −L(k)
mn

) ]
∈

CN×

(
N+L(max)

mn

)
. The Nyquist samples from each of the

N + L(max)
mn range-cells for the q-th pulse are collected in the

following vector

y(q)
mn = z(q)

mn + w(q)
mn, q = 0, · · · , Q − 1, (11)

where w(q)
mn is the sampled noise vector and the signal trail is

z(q)
mn =

K∑
k=1

√
Eβ(k)

mn(q)ej2π f (k)
mn qTPRI CT

L(k)
mn

sm

= Amnx(q)
mn, (12)

where Amn =

[
CT

L(1)
mn

sm, · · · , CT
L(K )

mn
sm

]
∈ C(N+Lmax

mn )×K

and x(q)
mn =

[
β(1)

mnej2π f (1)
mn qTPRI , · · · , β(K )

mn ej2π f (K )
mn qTPRI

]T
.

Here, sm ∈ CN×1 is the sampled transmit waveform
from the m-th transmit antenna. In the above, we used
ej2π f (k)

mn t
≈ ej2π f (k)

mn qTPRI which follows from the condition C3.
After collecting samples for Q pulses, we formulate the

noise-free signal trail of the data matrix at the n-th receiver
as

Zmn =
[
z(1)

mn, z(2)
mn, · · · , z(Q)

mn

]T
= Dmn3mn0mn, (13)

where the transmit signal matrix 0mn =[
CT

L(1)
mn

sm · · · CT
L(K )

mn
sm

]T
, the Doppler matrix Dmn =[

d(1)
mn, · · · , d(K )

mn

]
and the reflectivity matrix 3mn =

diag
{[

β(1)
mn, · · · , β(K )

mn

]}
. Here, d(k)

mn is the Doppler steering
vector defined as [48]

d(k)
mn =

[
1, ej2π f (k)

mn TPRI , · · · , ej2π f (k)
mn (Q−1)TPRI

]T
. (14)

We have the following result regarding the rank of the noise-
free data matrix Zmn .

Proposition 1: and Zmn ∈ CQ×

(
N+L(max)

mn

)
be the data matrix

formulated from the samples at the n-th receive antenna for
the reflected echoes corresponding to the m-th transmit signal.
Then, the rank of Zmn is determined by the number of different
ranges as well as different velocities among all targets and the
rank is bounded by K .

Proof: The matrices 0mn and Dmn in (13) have the
dimensions K ×

(
N + L(max)

mn

)
and Q×K , respectively. Under

the assumption of slow moving targets, each target stays in
the same range bin during a CPI. We note that the rank of
matrix Dmn is governed by the velocity differences among all
K targets. If more than one targets have the same velocity,
the rank of matrix Dmn could be less than K . For matrix
0mn , its rank is governed by the time-differences-of-arrival
L(K )

mn , k = 1, · · · , K , which, in turn, are determined by the
range differences of all K targets. If more than one targets
occupy the same range bin, the rank of 0mn could be less
than K . Therefore, following (13), the data matrix Zmn ∈

CQ×

(
N+L(max)

mn

)
is low rank and its rank is bounded by K .

Combining the noise-trail with Zmn , we obtain the full data
matrix

Ymn = Zmn + Wmn, (15)

where Wmn is the sampled noise matrix.

D. Reduced-Rate Sampling and Matrix Completion

In our MC-WS-MIMO, each receiver samples the incoming
signal during each pulse at sub-Nyquist rates. There are
several ways to implement a sub-Nyquist sampler [19]. Here,
we assume that the samples are selected uniformly at random.
For each Tx-Rx pair, these low-rate samples are modeled as

partially observed data matrices Xmn ∈ CQ×

(
N+L(max)

mn

)
:

[Xmn]i j =

{
[Ymn]i j , (i, j) ∈ �,

0, otherwise,
(16)

where � is the set of indices of observed entries with |�| = h.
The above sampling process can be compactly represented by
using the operator P� such that Xmn = P�(Ymn).
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The receiver then forwards these partially observed data
matrices to a fusion center which recovers the missing entries
by applying MC techniques as follows. From Proposition 1,
each of the matrices Zmn , n = 1, · · · , Mr , m = 1, · · · , Mt ,
is low rank; their rank being bounded by K . In the noise-free
case, these matrices can be completed by solving the following
optimization [37], [39]

minimize ∥Xmn∥∗

subject to P�(Xmn) = P�(Zmn), (17)

where the nuclear norm ∥Xmn∥∗ is the sum of singular values
of matrix Xmn .

Here, the conditions of MC are related to the bounds on
the coherence of Zmn . Assume the compact singular value
decomposition (SVD) of Zmn is Zmn =

∑K
k=1 ρkukvH

k , where
ρk , k = 1, · · · , K are the singular values, and uk (vk) are
the corresponding left (right) singular vectors. The subspaces
spanned by uk and vk are U and V , respectively. Denote
n1 = Q and n2 = N + L(max)

mn . The coherence of U (and
similarly for V ) is [37]

µ(U ) =
n1

K
max

1≤i≤n1

∥∥U(i)
∥∥2

∈

[
1,

n1

K

]
, (18)

where U(i) is the i-th row of matrix U = [u1, · · · , uK ]. The
matrix Zmn has coherence with parameters µ0 and µ1 if A0
max(µ(U ), µ(V )) ≤ µ0 for some positive µ0.

A1 The maximum element of matrix
∑

1≤i≤K ui vH
i is

bounded by µ1

√
K

/
(n1n2) in absolute value for some positive

µ1.
If the matrix Zmn satisfies A0 and A1, the following theorem

provides a probabilistic bound for the number of observed
entries needed to successfully recover matrix Zmn .

Theorem 1 [37]: Suppose we observe h entries of a rank-
K matrix of Zmn ∈ Cn1×n2 uniformly at random. Assume
b = max(n1, n2). There exist constants C and ζ that if

h ≥ C max
(
µ2

1, µ
1/2
0 µ1, µ0b1/4

)
γ K b log b, (19)

for some γ > 2, the minimizer to problem (17) is unique and
equal to Zmn with probability of 1 − ζb−γ . For K ≤ µ−1

0 b1/5,
the bound can be improved to m ≥ Cµ0b6/5γ K log b, without
affecting the probability of success.

In the presence of noise, we have P�(Ymn) = P�(Zmn) +

P�(Wmn). Then, Zmn is completed by solving the optimization

minimize ∥Xmn∥∗

subject to ∥P�(Xmn − Ymn)∥F ≤ δ, (20)

where δ2
=

(
h +

√
8h

)
σ 2 and σ 2 is the covariance of

noise. Denote he solution to the optimization problem (20) by
Ẑmn . Then, the error norm is bounded as

∥∥Ẑmn − Zmn
∥∥
F ≤

4
√

(2n1n2 + m) min(n1, n2)
/

mδ + 2δ [38]. The common

singular value thresholding (SVT) algorithm [49] can be
applied to solve the above nuclear norm problem.

III. TARGET LOCALIZATION

Once the matrices Zmn, m = 1, · · · , Mt , n = 1, · · · , Mr are
recovered via MC technique at the fusion center, the unknown
target parameters are estimated using any of the classical signal
processing techniques such as ML [50], least squares, or sparse
reconstruction methods [25]. Since the target parameters in a
WS-MIMO are usually statistically modeled, we adopt the ML
approach for target localization here.

A. Maximum Likelihood Method

Denote the unknown target parameters by θ =
[
x, y

]T
∈

2, where 2 is a two-dimensional space that includes all
possible values of (x, y). Assume the hypotheses H1 and
H0 correspond to, respectively, the presence and absence of
the target return in the received signal in (11) that follows the
distribution

y(q)
mn ∼ NC

(
z(q)

mn, σ
2
n I

)
, (21)

where NC denotes the complex multivariate circularly
symmetric Gaussian probability density function. The negative
log-likelihood ratio (LLR) of hypotheses H1 and H0, is

Lmn(θ , Ymn) =
1
σ 2

n

Q−1∑
q=0

∥∥y(q)
mn − Amnx(q)

mn

∥∥2
. (22)

Since the noise and target reflection coefficients are statisti-
cally independent, the joint likelihood ratio is the product of
individual likelihood ratios. The joint negative LLR is

L(θ) =

Mt∑
m=1

Mr∑
n=1

Lmn(θ , Ymn)

=

Mt∑
m=1

Mr∑
n=1

Q−1∑
q=0

1
σ 2

n

∥∥y(q)
mn − Amnx(q)

mn

∥∥2
. (23)

By minimizing (23) over x(q)
mn , the least squares solution is

x̂(q)

mn = Amn
(
AH

mnAmn
)−1AH

mny(q)
mn. (24)

By substituting (24) in (23), the joint negative LLR function
becomes

L(θ) =

Mt∑
m=1

Mr∑
n=1

Q−1∑
q=0

1
σ 2

n

∥∥P⊥

mny(q)
mn

∥∥2
, (25)

where P⊥
mn = I − Amn

(
AH

mnAmn
)−1AH

mn is the orthogonal
projection matrix on the column space of Amn . The ML
estimate of the parameter vector θ is

θ̂ML = arg max
2

−

Mt∑
m=1

Mr∑
n=1

Q−1∑
q=0

1
σ 2

n

∥∥P⊥

mny(q)
mn

∥∥2

. (26)

In general, the computationally demanding problem in (26) is
solved by nonlinear optimization algorithms such as genetic
algorithms and simulated annealing [51]. In this paper,
we adopt a two-dimensional search over 2 to find the peaks
of −L(θ).
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B. Geometric Method

Alternatively, a geometric approach may be employed for
localization [52] to obtain a closed-form solution that leads
to a reduced computational complexity when compared with
the ML approach. For example, [52] employs a two-stage
weighted least squares (WLS) to determine the location of
a target based on the bistatic range measurements in a passive
MIMO radar. Similar closed-form localization algorithms have
been suggested for distributed MIMO radars, wherein the
transmitters and receivers may or may not be co-located [53].
These approaches require time delay (TD) estimation to get an
initial measurement of the range from transmitters to receivers.

Assume that the unknown target position is p(m)
=[

x (m)
t , y(m)

t

]T
, the i-th transmitter placed at known position

p(i)
t =

[
xTi , yTi

]T for i = 1, 2, . . . , Mt , and the j-th receiver
at known positions p( j)

r =
[
xR j , yR j

]T for j = 1, 2, . . . , Mr .
The distance between the target and the i-th transmitter is

RtTi =

√(
xTi − xt

)2
+

(
yTi − yt

)2
. (27)

The distance between the target and the j-th receiver is

Rt R j =

√(
xR j − xt

)2
+

(
yR j − yt

)2
. (28)

Then, the total range RtTi R j is

RtTi R j = RtTi + Rt R j

=

√(
xTi − xt

)2
+

(
yTi − yt

)2 (29)

+

√(
xR j − xt

)2
+

(
yR j − yt

)2
. (30)

Reformulate (30) as

RtTi R j −

√(
xTi − xt

)2
+

(
yTi − yt

)2

=

√(
xR j − xt

)2
+

(
yR j − yt

)2
. (31)

Squaring both sides of (31), rearranging the terms, and
simplifying yields(

xR j − xTi

)
xt +

(
yR j − yTi

)
yt − RtTi R j RtTi

=
1
2

(
R2

R j
− R2

tTi R j
− R2

Ti

)
, (32)

where RR j (RtTi R j ) are the position coordinates of transmitter
(receiver):

RTi =

√
x2

Ti
+ y2

Ti
, (33)

and

RR j =

√
x2

R j
+ y2

R j
, (34)

Arranging equation (32) in a matrix form with Mt transmitters
and Mr receivers leads to the following system of linear
equations:

Ax = b, (35)

where

A =


D1 −rt1 . . . 0
D2 0 . . . 0
...

...
. . .

...

DMt 0 . . . −rt Mt

 ∈ C(Mt ×Mr )×(Mt +3),

(36)

x =
[
xt yt RtT1 · · · RtTMt

]T
, (37)

b =
[
bT

1 bT
2 bT

3 · · · bT
Mt

]T
, (38)

Di =


xR1 − xTi yR1 − yTi

xR2 − xTi yR2 − yTi

...
...

xRMr
− xTi yRMr

− yTi

 ∈ CMr ×2, (39)

bi =
1
2

 R2
R1

− R2
tTi R1

− R2
Ti

...

R2
RMr

− R2
tTi RMr

− R2
Ti

 ∈ RMr ×1, i = 1, · · · , Mt ,

(40)

and rti =
[
RtTi R1 , . . . , RtTi RMr

]T is the range measurement
vector corresponding to the i-th transmit antenna, and rt =[
rt1, . . . , rt Mt

]T is the range measurement vector for all
transmit antennas. Applying the ML method to TD estimation
produces [54]

τ̂ = argmax
τ

∣∣∣∣∣ Mt∑
m=1

Mr∑
n=1

ej2π fcτmn

τ
β
mn

Q∑
q=0

y(q)
mns†(q)

mn

∣∣∣∣∣
2

Mt∑
m=1

Mr∑
n=1

1
τ

2β
mn

, (41)

where ymn is the signal vector transmitted from the m-th
transmit antenna and received by the n-th receive antenna,
s†

m is conjugate transposition of transmit waveform vector of
sm transmitted from the m-th transmit antenna, β is path loss.
After obtaining the TD estimates, applying WLS yields

x̂init =
(
ÂTÂ

)−1ÂTb, (42)

from which we obtain the initial target position
[
x̂ t , ŷt

]T as[
x̂ t

ŷt

]
=

[
1 0 0 0 . . . 0
0 1 0 0 . . . 0

]
x̂init. (43)

The distance between the target and transmitters used for
designing the weighting matrix is then computed using[
x̂ t , ŷt

]T. The weighting matrix W becomes

W = C−1
ε = ((3 − 0)Cn(3 − 0))−1, (44)

where 3 = diag(rt), 0 =

([
RtT1 1T, . . . , RtTMt

1T
]T

)
, and 1 is

a vector of all ones of length Mr . The target location estimate
is

x̂final =
(
ÂTWÂ

)−1ÂTWb. (45)
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C. Lower Error Bounds

Define the target parameter vector θ =
[
x̂ t , ŷt , ξ̂ re, ξ̂ im

]
,

where ξ̂ re (ξ̂ im) is the real (and imaginary) part of target’s
complex reflectivity, that needs to be estimated. The CRLB
for estimating θ is [55]

CRLB = J−1(θ), (46)

where the Fisher information matrix (FIM) is

J(θ) = Ey|θ

{[
∂

∂θ
logp(y | θ)

][
∂

∂θ
logp(y | θ)

]T
}

, (47)

where logp(y | θ) is the probability density function (pdf)
of received signal y conditioned on θ and Ey|θ {·} is the
conditional expectation of y given θ . We are interested in
only the target position and, thus, need to extract the 2 × 2
submatrix of CRLB matrix, i.e., [CRLB]2×2 =

[
J−1(θ)

]
2×2.

Using the Schur complement of block matrix [56],

[CRLB]2×2 =
(
H3HT

− VH3T
ζ HTVT)−1

, (48)

where

H =

[
A11 . . . AMr Mt

B11 . . . BMr Mt

]
Mr Mt ×Mr Mt

, (49)

3 = 8π2SNR
(

f 2
c + β2)IMr Mt ×Mr Mt , (50)

H =
4π fcSNR

|ζ |
2

−ζim ζre
...

...

−ζim ζre


Mr Mt ×2

, (51)

and

3ζ = SNR
Mt Mr

|ζ |
2 I2×2, (52)

where SNR =
E

|ζ |
2 , and β =

∫
B f 2|S( f )|2d f∫

B |S( f )|2d f
is the effective

bandwidth and the integration is over the bandwidth B. The
elements of matrix H are defined as Alk = cos φtk + cos φrl

and Blk = sin φtk + sin φrl , where φtk = tan−1
(

yt −ytk
xt −xtk

)
and φrl = tan−1

(
yt −yrl
xt −xrl

)
are the phases that reveal the

geometric relationship between the Tx-Rx locations and the
target position.

The minimum mean square errors (MMSEs) in the estimate
of the target’s x- and y-coordinates are, respectively,

σ 2
x (MMSE) =

c2

8π2SN R
(

f 2
c + β2

)
·

ex
uC RL B

, (53)

and

σ 2
y (MMSE) =

c2

8π2SN R
(

f 2
c + β2

)
·

ey

uC RL B

, (54)

where the coefficients

ex =

 Mr∑
l=1

Mt∑
k=1

B2
lk −

(∑Mr
l=1

∑Mt
k=1

(
B2

lk

))2

(
1 +

β2

f 2
c

)
Mr Mt


, (55)

and

ey =

 Mr∑
l=1

Mt∑
k=1

A2
lk −

(∑Mr
l=1

∑Mt
k=1

(
A2

lk

))2

(
1 +

β2

f 2
c

)
Mr Mt


. (56)

D. WS-MIMO Doppler Estimation

To compute the Doppler velocities, we adopt the ML
approach [10]. Define the unknown parameter vector of
the k-th target as θ (k)

=
[
v(k)

x , v(k)
y , β(k)

mn

]
, then the

unknown parameter vector of all targets is denoted as θ =[
θ (1), θ (2), . . . , θ (K )

]
The joint pdf of the received signal vector

ymn = [y(0)
mn, y(2)

mn, . . . , y(Q−1)
mn ] is [10]

p(ymn; θ) ∝ exp

{
−

Mt∑
m=1

Mr∑
n=1

∫
T

∣∣∣∣∣
K∑

k=1

y(k)
mn(t)

−

K∑
k=1

Q−1∑
q=0

√
Eβ(k)

mnsm(t − τmn − qTPRI)e
j2π f (k)

mn

(
v

(k)
x ,v

(k)
y

)
t

∣∣∣∣∣∣
2

dt

.

(57)

Following [55], the pdf in (57) yields the ML estimation of
unknown parameters as

θ̂ M L = argmax
θ

{ln p(ymn; θ)}

= argmax
θ

−

Mt∑
m=1

Mr∑
n=1

∫
T

∣∣∣∣∣∣
K∑

k=1

y(k)
mn(t) −

K∑
k=1

Q−1∑
q=0

√
Eβ(k)

mn

sm(t − τmn − qTPRI)e
j2π f (k)

mn

(
v

(k)
x ,v

(k)
y

)
t
∣∣∣∣2

dt

}
. (58)

To simplify the analysis, the complex reflectivity coefficients
β(k)

mn are assumed to be the same for all paths under the
assumption that the scatters are isotropic [10], i.e., β(k)

mn = β.
Then, the derivative of the log-likelihood function with respect
to β vanishes, i.e.,

∂

∂β
(k)
mn

ln p(ymn; θ) = 0. (59)

The ML estimate of β becomes

β̂M L =
1

√
Eρ

Mr∑
m=1

Mt∑
n=1

Q−1∑
q=0

K∑
k=1

∫
T

y(k)
mn(t)s

†
m(t − τmn − qTPRI)

e− j2π f (k)
mn

(
v

(k)
x ,v

(k)
y

)
t dt. (60)

where

ρ =

Mr∑
m=1

Mt∑
n=1

∫
T

∣∣∣∣∣∣
Q−1∑
q=0

K∑
k=1

y(k)
mn(t)s

†
m(t − τmn − qTPRI)

e− j2π f (k)
mn

(
v

(k)
x ,v

(k)
y

)
t
∣∣∣∣2

dt. (61)

Expanding the likelihood function yields

ln p(ymn; θ)

= −

Mr∑
m=1

Mt∑
n=1

∫
T

y2
mndt

+ 2β

Mr∑
m=1

Mt∑
n=1

Q−1∑
q=0

K∑
k=1

∫
T

√
E ymn(t)s†

m(t − τmn − qTPRI)
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e− j2π f (k)
mn

(
v

(k)
x ,v

(k)
y

)
t dt

− β2 E
Mr∑

m=1

Mt∑
n=1

∫
T

∣∣∣∣∣∣
Q−1∑
q=0

K∑
k=1

sm(t − τmn − qTPRI)

e j2π f (k)
mn

(
v

(k)
x ,v

(k)
y

)
t
∣∣∣∣2

dt. (62)

Since the first and the last terms in (62) are both negative,
maximizing the whole likelihood function is equivalent to
maximizing the second term. By substituting β with β̂M L ,
it derives

v̂M L = argmax
v

{ln p(ymn; v)}

s†
m(t − τmn − qTPRI)e

− j2π f (k)
mn

(
v

(k)
x ,v

(k)
y

)
t dt

}

= argmax
v

(k)
x ,v

(k)
y

2β̂M L

Mr∑
m=1

Mt∑
n=1

Q−1∑
q=0

K∑
k=1

∫
T

√
E ymn(t)

s†
m(t − τmn − qTPRI)e

− j2π f (k)
mn

(
v

(k)
x ,v

(k)
y

)
t dt

}

= argmax
v

(k)
x ,v

(k)
y

 1
ρ

∣∣∣∣∣∣
Mr∑

m=1

Mt∑
n=1

Q−1∑
q=0

K∑
k=1

∫
T

ymn(t)

s†
m(t − τmn − qTPRI)e

− j2π f (k)
mn

(
v

(k)
x ,v

(k)
y

)
t dt

∣∣∣∣2
}

. (63)

The discrete form of (63) is

v̂M L = argmax
v

(k)
x ,v

(k)
y

 1
ρ

∣∣∣∣∣∣
Mr∑

m=1

Mt∑
n=1

Q−1∑
q=0

K∑
k=1

ymn(k)

s†
m(k, q)e− j2π f (k)

mn

(
v

(k)
x ,v

(k)
y

)
qTP RI

∣∣∣∣2
}

. (64)

The two-dimensional search is adopted to obtain the ML
estimates of the target velocities.

Algorithm 1 below summarizes the estimation procedure of
target parameters in MC-WS-MIMO radar.

Algorithm 1 MC-WS-MIMO Radar Target Parameter Estima-
tion

Input: Partially observed samples Xmn and set of indices
of observed entries �.
Output: Target location (x, y) and velocity (vx , vy).

1: Recover the full data matrix Ẑmn by solving the
optimization problem of (20) using SVT algorithm.

2: Estimate the target’s location, (x, y), with maximum
likelihood approach following equation (26).

3: Estimate the target’s velocity, (vx , vy), with maximum
likelihood approach following equation (64).

IV. PERFORMANCE ANALYSES

To characterize the performance of MC-WS-MIMO radar,
we derive the guarantees on the coherence and recoverability
of the data matrix, statistical AF, and lower error bounds on
parameter estimates.

A. Coherence and Recoverability of Zmn

Recall the following useful result from [57]:
Theorem 2 [57]: Assume M ∈ CN×N be a matrix with real

eigenvalues. Define

τ ≜
tr(M)

N
, κ2 ≜

tr
(
M2

)
N

− τ 2. (65)

Then, it holds that

τ − κ
√

N − 1 ≤ λmin(M) ≤ τ −
κ

√
N − 1

, (66)

τ +
κ

√
N − 1

≤ λmax(M) ≤ τ + κ
√

N − 1, (67)

where λmin(·) (λmax(·)) is the minimum (maximum) eigenvalue
of its matrix argument. Further, equality holds on the left
(right) of (66) if and only if equality holds on the left (right)
of (67) if and only if the N − 1 largest (smallest) eigenvalues
are equal.

We now state our main performance guarantee for MC-WS-
MIMO in the following Theorem 3.

Theorem 3 (Coherence of matrix Zmn): Consider the widely
separated MIMO radar system as presented in Section II and
assume the set of target Doppler frequency

{
f (k)
mn

}
k∈N+

K
consists

of almost surely distinct members. Define

βQ(ξt ) ≜ sup
x∈[ξt ,

1
2 ]

sin2(π Qx)

sin2(πx)
, (68)

ξt ≜ min
(i, j)∈N+

K ×N+

K ,i ̸= j
g
(
TPRI

∣∣ f (i)
mn − f ( j)

mn

∣∣), (69)

and

g(x) ≜

{
⌈x⌉ − x, ⌈x⌉−x ≤

1
2

x − ⌊x⌋, otherwise.
(70)

Consider that the transmit waveforms are unimodular
following assumption C7 and the waveform autocorrelation
is denoted as

γ
(
li j

)
=

N∑
k=li j +1

sm(k)s∗

m

(
k − li j

)
, (71)

where li j = L(i)
mn − L( j)

mn . If K ≤
Q√

βQ(ξt )
, the coherence of

matrix Zmn satisfies

µ(U ) ≤
Q

Q − (K − 1)
√

βQ(ξt )
, (72)

µ(V ) ≤
N + L(max)

mn

N −
√

K − 1

√
K∑

j ̸=i

K∑
i=1

∣∣γ (
li j

)∣∣2

. (73)

The matrix Zmn obeys the conditions A0 and A1 with µ0 ≜
max{µ(U ), µ(V )}, and µ1 ≜

√
Kµ0 with probability 1.

Proof: We prove the bounds on µ(U ) and µ(V )

separately as follows.
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1) Bound on µ(U ): We would like to consider the case
where both sets of ranges and velocities consist of distinct
members. The compact SVD of Zmn can be written as

Zmn = U6VH , (74)

where U ∈ CQ×K , V ∈ C
(

N+L(max)
mn

)
×K such that UH U =

IK , VH V = IK , and 6 ∈ RK×K is a diagonal matrix
containing the singular values of Zmn . Consider the QR
decomposition of Dmn , i.e., Dmn = Qr Rr , where Qr ∈ CQ×K

is such that QH
r Qr ≡ IK and Rr ∈ CK×K is an upper

triangular matrix. Similarly, consider the QR decomposition

of 0T
mn , i.e., 0T

mn = QsRs , where Qs ∈ C
(

N+L(max)
mn

)
×K is such

that QH
s Qs ≡ IK and Rs is an upper triangular matrix. The

matrix Rr3mnRT
s ∈ CK×K is rank-K matrix and its SVD can

be expressed as Rr3mnRT
s = Q11QH

2 . Here, Q1 ∈ CK×K

is such that Q1QH
1 = QH

1 Q1 = IK (the same holds for Q2)
and 1 ∈ RK×K is a non-zero diagonal matrix, containing the
singular values of matrix Rr3mnRT

s . Thus, it holds that

Zmn = Qr Q11QH
2 QT

s = Qr Q11
(
Q∗

s Q2
)H

, (75)

is a valid SVD of Zmn since (Qr Q1)
H Qr Q1 = IK and(

Q∗
s Q2

)H Q∗
s Q2 = IK . According to the uniqueness of singular

values of a matrix, it holds that 6 = 1, U = Qr Q1 and
V = Q∗

s Q2.
Denote the i-th row of Qr and Dmn as Q(i)

r and D(i)
mn ,

respectively. The coherence of the row space of Zmn is

µ(U ) =
Q
K

sup
i∈N+

Q

∥∥Q(i)
r Q1

∥∥2
2 =

Q
K

sup
i∈N+

Q

∥∥Q(i)
r

∥∥2
2

=
Q
K

sup
i∈N+

Q

∥∥D(i)
mnR−1

r

∥∥2
2

≤
Q
K

sup
i∈N+

Q

∥∥D(i)
mn

∥∥2
2

σ 2
min(Rr )

,

≤
Q

σ 2
min(Rr )

, (76)

where

σ 2
min(Rr ) = λmin

(
RH

r Rr
)

= λmin
(
RH

r QH
r Qr Rr

)
= λmin

(
DH

mnDmn
)
. (77)

Here, we use the symbol λmin(·) to denote the minimal
eigenvalue of a matrix. Thus,

µ(U ) ≤
Q

λmin
(
DH

mnDmn
) . (78)

2) Bound on µ(V ): According to (78), we need a strict
positive lower bound of λmin

(
DH

mnDmn
)
, with

DH
mnDmn =


Q δ1,2 · · · δ1,K

δ∗

1,2 Q · · · δ2,K
...

...
. . .

...

δ∗

1,K δ∗

2,K · · · Q

, (79)

where

δi, j =

Q∑
q=1

ej2πq
(

f (i)
mn− f ( j)

mn

)
TPRI

, ∀(i, j) ∈ NK × NK . (80)

We apply Theorem 2 to matrix M ≜ DH
mnDmn ∈ CN×N . The

trace of M is K Q. Thus,

τ =
K Q
K

= Q. (81)

Since M is a Hermitian matrix, it is true that

tr
(
M2)

=

K∑
k1=1

K∑
k2=1

∣∣δk1,k2

∣∣2

=

K∑
k1=1

Q2
+

K∑
k2=1
k2 ̸=k1

∣∣∣∣∣∣
Q∑

q=1

ej2πq
(

f (k1)
mn − f (k2)

mn

)
TPRI

∣∣∣∣∣∣
2


=

K∑
k1=1

Q2
+

K∑
k2=1
k2 ̸=k1

sin2(π Q
(

f (k1)
mn − f (k2)

mn

)
TPRI

)
sin2

(
π

(
f (k1)
mn − f (k2)

mn

)
TPRI

)


≜
K∑

k1=1

Q2
+

K∑
k2=1
k2 ̸=k1

φ2
Q

((
f (k1)
mn − f (k2)

mn

)
TPRI

), (82)

where

φQ(x) ≜
sin(π Qx)

sin(πx)
, x ∈ R, Q ∈ N+. (83)

For x ∈
[
k, k +

1
2

]
, ∀k ∈ Z, the sequence of φ2

Q(x) is strictly

decreasing. Define ξt ≜ min
i ̸= j

g
(∣∣∣αt

i − αt
j

∣∣∣) ∈
[
0, 1

2

]
, where

g(x) ≜

{
⌈x⌉ − x, ⌈x⌉−x ≤

1
2

x − ⌊x⌋, otherwise.
(84)

The upper bound of (82) is

tr
(
M2)

=

K∑
k1=1

Q2
+ (K − 1) sup

x∈

[
ξt ,

1
2

] φ2
Q(x)


≜ K Q2

+ K (K − 1)βQ(ξt ). (85)

According to Theorem 2,

λmin(M) = λmin
(
DH

mnDmn
)

≥ Q − (K − 1)
√

βQ(ξt ). (86)

Therefore, if K ≤
Q√

βQ(ξt )
, it holds that

µ(U ) ≤
Q

Q − (K − 1)
√

βQ(ξt )
. (87)

The coherence of the column space of Zmn is

µ(V ) =
N + L(max)

mn

K
sup

i∈N+

N+L(max)
mn

∥∥Q∗(i)
s Q2

∥∥2
2

=
N + L(max)

mn

K
sup

i∈N+

N+L(max)
mn

∥∥Q(i)
s

∥∥2
2

=
N + L(max)

mn

K
sup

i∈N+

N+L(max)
mn

∥∥∥(
0T

mn

)(i)R−1
s

∥∥∥2

2

≤
N + L(max)

mn

K

sup
i∈N+

N+L(max)
mn

∥∥∥(
0T

mn

)(i)
∥∥∥2

2

σ 2
min(Rs)

, (88)
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where

σ 2
min(Rs) = λmin

(
RH

s Rs
)

= λmin
(
RH

s QH
s QsRs

)
= λmin

((
0T

mn

)H
0T

mn

)
. (89)

Define 8 =
(
0T

mn

)H
0T

mn . It holds that

8 =


γ (0) γ ∗(l12) · · · γ ∗(l1K )

γ (l12) γ (0) · · · γ ∗(l2K )
...

...
. . .

...

γ (l1K ) γ (l2K ) · · · γ (0)

, (90)

where li j = L(i)
mn − L( j)

mn and γ
(
li j

)
is the waveform auto-

correlation function, i.e.,

γ
(
li j

)
= sH

m

(
CT

L(i)
mn

)H
CT

L( j)
mn

sm

= sH
m Jli j sm

=

N∑
k=li j +1

sm(k)s∗

m

(
k − li j

)
. (91)

Here, Jn is a shifting matrix [46], defined as

Jn =


n︷ ︸︸ ︷

0 · · · 0 1 0
. . .

1
0


N×N

. (92)

Thus,

τ =
tr(8)

K
= γ (0), (93)

tr
(
82)

= K

|γ (0)|2 +

K∑
j ̸=i

K∑
i=1

∣∣γ (
li j

)∣∣2

. (94)

Then, according to Theorem 2,

λmin(8) ≥ γ (0) −
√

K − 1

√√√√ K∑
j ̸=i

K∑
i=1

∣∣γ (
li j

)∣∣2
. (95)

For unimodular sequence, it is easy to verify that

γ (0) = N , sup
i∈N+

N+L(max)
mn

∥∥∥(
0T

mn

)(i)
∥∥∥2

= K . (96)

We have

µ(V ) ≤
N + L(max)

mn

K

sup
i∈N+

N+L(max)
mn

∥∥∥(
0T

mn

)(i)
∥∥∥2

γ (0) −
√

K − 1

√
K∑

j ̸=i

K∑
i=1

∣∣γ (
li j

)∣∣2

=
N + L(max)

mn

N −
√

K − 1

√
K∑

j ̸=i

K∑
i=1

∣∣γ (
li j

)∣∣2

. (97)

If the unimodular waveform sequences are designed to have
ideal auto-correlation properties, i.e.,

γ (l) = 0, l = 1, . . . , max
j ̸=i

∣∣L(i)
mn − L( j)

mn

∣∣, (98)

the coherence of the column space of Zmn satisfies

µ(V ) ≤ 1 +
L(max)

mn

N
. (99)

Remarks: Theorem 4 suggests that the maximum time-
difference-of-arrival, denoted as L(max)

mn , or alternatively the
distribution of transmitting and receiving antennas, can
influence the coherence of the radar data matrix. This implies
that, given identical target locations, the recovery performance
of matrix completion may vary depending on the geometry of
the antenna setup.

B. Ambiguity Function of WS-MIMO Radar

The ambiguity function (AF) characterizes radar’s ability
to distinguish two closely-spaced targets [58], [59], [60],
[61]. In [59], WS-MIMO radar AF is based on the ML
and Kullback-directed divergence (KDD) [60]. Alternatively,
[61] proposes an AF for distributed MIMO radar while
avoiding the large matrix inversions. We adopt this definition
of AF to evaluate the performance of WS-MIMO radar with
different antenna geometries and SNRs. Recall the received
signal

ymn(t) =

Q−1∑
q=0

√
Eβmnsm(t − τmn − qTPRI)

× ej2π fmn t e− j2π fcτmn + wmn(t). (100)

To further simplify (100), define

αmn(θ) =
√

Eβmne− j2π fcτmn ,

and

γmn(t, θ) =

Q−1∑
q=0

sm(t − τmn − qTPRI)ej2π fmn t , (101)

where θ =
[
x, y, vx , vy

]T is the vector containing target
position and Doppler velocity. Then (100) becomes

ymn(t) = γmn(t, θ)αmn(θ) + wmn(t). (102)

After sampling, we rewrite the discretized (102) as a(
N + L(max)

mn

)
× 1 vector

yn,m = γ m(θ , n)αn,m(θ) + wn. (103)

Collecting the samples for all
antennas, we obtain the received signal
matrix

Y = ϒ(θ)α(θ) + W, (104)

which turns out to be a
(
N + L(max)

mn

)
Mr × Mr block matrix

Y =


γ 1 0 . . . 0
0 γ 2 . . . 0
...

...
. . .

...

0 0 . . . γ Mr

, (105)
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Fig. 1. (a) An illustration of WS-MIMO radar with Mt = 3 transmit and Mr = 10 receive antennas. (b) The data matrix at receive antenna
pr = [2427.1, −1763.4]T corresponding to signal from the transmitter at pt = [−2500, −4330.1]T reflected from the target located at p = [1100, 1100]T .
(c) Matrix recovery error ε as a function of SNR for the WS-MIMO configuration of Fig. 1 (a). The error is averaged over all 30 Tx-Rx pairs; (d) Matrix
recovery error ε as a function of SNR for the WS-MIMO configuration of Fig. 2 (a) and 2 (d) respectively. .

such that

γ n =

Mt∑
m=1

yn,m, n = 1, 2, · · · , Mr

=

Mt∑
m=1

γ m(θ , n)αn,m(θ) + wn

= ϒ(θ , n)α(θ , n) + wn. (106)

where

ϒ(θ , n)

=
[
γ 1(θ , n), γ 2(θ , n), . . . , γ Mt

(θ , n)
]

∈ C
(

N+L(max)
mn

)
×Mt

,

(107)
α(θ , n)

=
[
αn,1(θ), αn,2(θ), . . . , αn,Mt (θ)

]T
∈ CMt ×1. (108)

Then ϒ(θ) and α(θ) in (104) are

ϒ(θ) =


ϒ(θ , 1) 0 . . . 0

0 ϒ(θ , 2) . . . 0
...

...
. . .

...

0 0 . . . ϒ(θ , Mr )

, (109)

and

α(θ) =


α(θ , 1) 0 . . . 0

0 α(θ , 2) . . . 0
...

...
. . .

...

0 0 . . . α(θ , Mt )

. (110)

According to [61] WS-MIMO AF is defined as

F(θ0, θ) = 1 −
I (θ0; θ)

sup I (θ0; θ)
. (111)

where

I (θ0; θ) =
1
2

[
tr
[
R−1

θ Rθ −
(
N + L(max)

mn

)
× Mr

]
− ln

∣∣R−1
θ0

Rθ

∣∣]
(112)

is the KDD between two covariance matrices Rθ0 and Rθ with
respect to received signal and the covariance matrix is

Rθ = E
{
YYH}

= E
{
(ϒ(θ)α(θ) + W)(ϒ(θ)α(θ) + W)H}

= ϒ(θ)E
{
α(θ)α(θ)H}

ϒ(θ)H
+ σ 2

nI
= ϒ(θ)C(θ)ϒ(θ)H

+ σ 2
nI. (113)

Substituting (113) into (112) and applying the constant energy
and SNR conditions [61], we obtain the AF as

F(θ0, θ) =
1

Mt Mr
tr
[∣∣ϒ(θ0)ϒ

H(θ)
∣∣2

]
. (114)

When θ = θ0, the KDD I (θ0; θ) reached its mini-
mum and then ambiguity function F(θ0, θ) achieves its
maximum. Unlike the AF of a monostatic radar systems
[62], the WS-MIMO AF introduced in (114) includes the
impact of the geometry of antenna distribution on the
performance of WS-MIMO systems. This is helpful in
determining an appropriate antenna configuration for real
applications.

V. NUMERICAL EXPERIMENTS

We evaluated the performance of our proposed MC-WS-
MIMO radar through numerical experiments. Throughout all
experiments, we employed singular value thresholding (SVT)
[49] algorithm at the fusion center to recover the data matrix
Zmn corresponding to the m-th-Tx-and-n-th-Rx pair from its
partial samples Xmn .

A. Reconstruction Error Under Different
Antenna Geometry

We considered a WS-MIMO radar with Mt = 3 transmit
and Mr = 10 receive antennas (Fig. 1 (a)) uniformly
distributed over circles with radii 5000 m and 3000 m,
respectively. The targets of interest are distributed in the area
S = [1000, 1200] × [1000, 1200] m2. The transmitters emit
Hadamard sequences [63] of length N = 64. The rows of
the Hadamard matrix are mutually orthogonal to each other
and can be used as Walsh codes in a MIMO radar. The
carrier frequency parameters were set to f0 = 5 GHz and
1 f = 50 MHz. The CPI comprised of Q = 128 pulses with
TPRI = 25 ms and Tp = 6.4 µs.

In the Nyquist case, the sampling frequency at the receive
antennas is fs = 10 MHz. In order to unambiguously sample
the area S, we choose the length of sampling window as
N + Lmax = 264, where Lmax = max

m,n

{
L(max)

mn

}
= 200.
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Fig. 2. The WS-MIMO radar antenna geometries and corresponding AF and PSF: (a) Circularly-placed receive antennas (b) AF corresponding to the
configuration in (a) under 100% sampling rate. (c) AF corresponds to the configuration in (a) under 20% sampling rate. (d) PSF for the configuration in (a).
(e-h) As in (a)-(d), respectively but for L-shaped receive antennas. (i-l) As in (a)-(d), respectively but for randomly placed receive antennas.

A single target located at p = [1100, 1100]T m with
velocity ν = [10, 10]T m/s is considered for recovery.
Fig. 1 (b) plots the data matrix Zmn for the receive antenna
pr = [2427.1, −1763.4]T m and the reflected echo for the
transmitter at pt = [−2500, −4330.1]T m at SNR = 20 dB.
The noise at each receive antenna is generated independently
for different Tx-Rx antenna pairs. It follows from Fig. 1 (b)
that the data matrix is rank-1 and the samples of reflected echo
start at range-sample index of L(1)

mn = 144.
In each CPI, the n-th receive antenna samples only 50%

of matrix Zmn , m = 1, · · · , Mt uniformly at random. At the
fusion center, when these matrices are completed using SVT,
we characterize the recovery performance by relative error
defined as ε =

∥Zmn−Ẑmn∥F
∥Zmn∥F

, where Ẑmn denotes the recovered
matrix. For different values of SNR, Fig. 1 (c) plots the
recovery error averaged over all Mr × Mt = 30 Tx-Rx
pairs. The error drops to approximately 3% at SNR =

20 dB. Fig. 1 (d) compares the recovery errors (averaged
over 100 trials) w.r.t. two different antenna configurations.
It follows that the circular antenna configuration generally
exhibits an improved and robust recovery over the L-shaped
geometry. Following equations (99) and (98), any change in
the placement of antennas results in a corresponding change
in the value of L(max)

mn , which may lead to a violation of
the coherence condition and a deterioration of the matrix
recovery performance. In Fig. 1 (d), L(max)

mn is 200 (116)

for the circularly-placed (L-shaped) antennas. Therefore, the
coherence condition is not adequately satisfied for L-shaped
geometry, resulting in larger relative recovery errors. The
outcomes of this simulation substantiate the validity of
Theorem 4.

B. Ambiguity Function (AF) and Point Spread Function
(PSF)

The WS-MIMO radar waveform based on Hadamard
codes is used in the simulation. All plotted Ambiguity
Functions (AFs) are displayed in original amplitude, without
normalization or logarithmic representation. Fig. 2 shows
the AF corresponding to different antenna geometry at SNR
= 20 dB. In this case, we still consider WS-MIMO radar
with Mt = 3 transmit and Mr = 10 receive antennas.
The 3 transmit antennas are uniformly distributed over a
circle with radii 5000 m as before but the 10 receive
antennas distribution is changed to a circle with radii 3000 m
(Fig. 2 (a)). Fig. 2 (c) displays another geometry, wherein the
receive antennas are linearly spaced in an L-shape. We also
consider a random geometry in Fig. 2e, wherein the receive
antennas are randomly distributed over [−3000m, 3000m] ×

[−3000m, 3000m]. From Fig. 2 (b), the AF achieves its
maximum at the target’s position which is consistent with
the property of AF stated in Section IV-B. We observe that
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Fig. 3. The ML estimation result using subsampling and matrix recovery signals for a target at p = [1100, 1100]T m with a velocity of ν = [10, 10]T m/s
under the WS-MIMO radar configuration given in Fig. 1 (a), SNR = 20 dB. The red cross indicates the location of the target. (a) target localization using
ML under Mt = 3, Mr = 10 and 50% sampling rate; (b) target localization using ML under Mt = 2, Mr = 4 and 50% sampling rate; (c) target localization
using ML with 20% subsampled signal; (d) target localization using ML after MC-based recovery.

Fig. 4. Single target location and velocity estimation MSE using different methods under different sampling rates and SNRs, Mt = 3, Mr = 10. (a) Target
location estimation with ML method on sub-sampled signal and MC-based recovered signal under SNR = 20dB; (b) Target location estimation with geometric
method [52] on sub-sampled signal and MC-based recovered signal under SNR = 20dB; (c) Target location estimation with ML method on sub-sampled signal
and MC-based recovered signal under sampling rate of 20%; (d) Target location estimation with geometric method [52] on sub-sampled signal and MC-based
recovered signal under sampling rate of 20%; (e) Target velocity estimation with ML method on sub-sampled signal and MC-based recovered signal versus
sampling rates; (f) Target velocity estimation with geometric method [52] on sub-sampled signal and MC-based recovered signal versus SNRs.

the AF corresponding to the L-shape linear distribution has a
larger ambiguous range compared to the circular and random
placement of the receive antennas. Figs. 2 (c), (f), and (i) show
the AFs corresponding to different array configurations under
20% sampling rate. It follows that the AF is degenerated under
a low sampling rate because stronger ambiguities appear at the
positions of the transmit/receive antennas and the target. This
indicates that the accuracy of localization also decreases with
sub-sampling. In addition, the circularly-placed geometry has
a better AF compared with the other configurations under sub-
sampling.

We compared the point spread function (PSF) and ambiguity
function w.r.t. the different WS-MIMO radar distributions.

Following [64], [65], we employ the PSF for WS-MIMO radar.
From the signal model in (12), the PSF is

Ps f
(
Rmn, R∗

mn

)
=

∣∣∣〈z(Rmn)
mn , z(R∗

mn)
mn

〉∣∣∣ (115)

=
1

Mt Mr Q

Mt∑
m=1

Mr∑
n=1

z†(Rmn)
mn z(R∗

mn)
mn , (116)

where z(Rmn)
mn is the signal waveform transmitted from the

m-th transmit antenna to some location in the target area
of interest and received by the n-th received antenna; and
z(Rmn)

mn is the signal waveform transmitted from the m-th
transmit antenna to the true target location and received
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Fig. 5. Estimation MSE of (a) locations and (b) velocities using MLE under different SNRs. Here, the MSE is averaged over two targets and Mt = 3,
Mr = 10.

by the n-th received antenna. For the WS-MIMO radar,
Figs. 2 (d),(h),(l) show the PSFs in x−y 2-D Cartesian coordi-
nates on a dB scale. The PSF’s peak value is at the true target
location.

C. Localization Performance Comparison

1) Different Number of Antennas: Fig. 3 (a) plots the ML
values for the 2-D search over the area S for a single target at
p = [1100, 1100]T m with velocity ν = [10, 10]T m/s at SNR
of 20 dB. Fig. 3(a) shows that the ML estimate corresponds
to the true location of the target. For comparison, in Fig. 3(b),
we also show the ML estimate for the same setting as in
Fig. 3(a) except that the number of antennas is reduced to
Mt = 2 and Mr = 4. We note the range resolution decreases
with the number of transmit-receive pairs.

After reconstructing the matrices Zmn , we show the ML-
based target location estimation. Fig. 3 (c) and (d) show
the ML performance for WS-MIMO radar configuration with
and without MC-based recovery. At SNR = 20 dB and
subsampling at 20% rate, when ML is applied directly
on subsampled signal (Fig. 3 (c)), estimation with ML is
quite inferior when compared with its application on MC-
based recovery (Fig. 3 (d)) wherein the recovery error is
around ε = 4.8%. Fig. 3 (a-d) are displayed in the original
amplitude.

2) Comparison With Geometric Method: Fig. 4 (a), (b)
shows the mean squared errors (MSEs) of single target
localization estimation with ML and geometric [52] methods
while increasing samples from 20% to 90%. We compute

the MSE of target location estimation as
∑K

i=1( p̂(i)− p(i))
2

K . The
MSE of target velocity estimation can be calculated similarly.
In the simulation, the target was set at [1100 m, 1100 m]T

with velocity of [10 m/s, 10 m/s]T . The antenna distribution
is the same as in Fig. 1 (a). The MC performances of ML
and geometric method do not change a lot with the number of
samples, thereby demonstrating the robustness of MC as well
as the redundancy (or low rankness) of data. A total of 1000
Monte Carlo experiments were conducted. The MSEs of the
single target localization estimation with ML and geometric

Fig. 6. The localization estimation for the single off-grid target using MLE
and geometric methods under different SNRs, Mt = 3, Mr = 10.

methods versus different SNRs are shown in Fig. 4 (c), (d).
The ML yields a smaller estimation MSE than the geometric
method under different SNRs. Besides, the MSEs for all
methods are nearly the same under different SNR values.
Fig. 4 (e), (f) shows the single target velocity estimation MSE
of the ML method under different sampling rates and SNRs.
The velocity estimation is improved through MC when SNR
is varied.

Furthermore, we also evaluated the performance for multiple
target scenarios. The antenna distribution of WS-MIMO radar
was the same as that in Fig. 1 (a). We considered two
targets located at [1100 m, 1100 m]T and [1200 m, 1050 m]T

with velocities of [10 m/s, 10 m/s]T and [20 m/s, 20 m/s]T ,
respectively. For 1, 000 Monte Carlo simulation trials, the
MSEs of target position and velocity estimates with ML
methods are shown in Fig. 5 (a), (b) for different SNRs.
The MSEs were calculated as the average of the MSE
of each target. It follows that, after matrix completion
on received data, the accuracy of both localization and
velocity estimation for multiple targets is improved with ML
method.

To verify that the matrix completion method for WS-
MIMO radar estimation is still valid for off-grid targets,
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we conducted numerical experiments in a single off-grid target
scenario, where the target location is [1025 m, 1175 m]T .
The area of interest is the same as in previous experiments,
i.e., S = [1000, 1200] × [1000, 1200] m2 and the grid
size for ML grid-searching is 50 m. Thus, the target is
off-grid, which means that ML estimates will always have
bias. The geometric method, which doesn’t require grid
searching, has lower MSE after MC for localization estimation
compared to the ML method, as shown in Fig. 6. For
off-grid target location estimation, when the search grid
is large, ML method does not provide better estimates
after MC.

VI. SUMMARY

We proposed the MC-WS-MIMO radar with CDM to detect
spatially diverse targets. We showed that the received signal
for each Tx-Rx pair over a CPI can be modeled as a low-
rank data matrix. Reduced rate sampling of the signal at each
receiver results in this matrix becoming partially observed.
We retrieve its missing entries using MC methods. Despite
sampling at low rates, our method retrieved the unknown
off-grid target parameters. Our experiments indicate target
parameter recovery with an accuracy of approximately 95%
at 20 dB SNR when the sampling rate is reduced to 20%. Our
MC-based recovery is beneficial in enhancing the accuracy
and robustness of target localization and velocity estimation in
SNR-deficient scenarios. We show that further improvement
in MC-based recovery is possible by analyzing the AFs for
different antenna placements. This is meaningful for radar
engineers in practical system design.
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