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AbstractÐAdvanced driver assistance systems (ADASs) and
autonomous vehicles rely on different types of sensors, such as
cameras, radar, ultrasonic, and LiDAR to sense the surround-
ing environment. Compared with the other types of sensors,
millimeter-wave automotive radar has advantages in terms of
low hardware cost and reliable object detection under poor
weather conditions, such as snow, rain, or fog, and doesn’t suffer
from light condition variations, such as darkness. High-resolution
radar bird’s-eye-view (BEV) obtained from radar range-azimuth
spectra through a polar-to-Cartesian coordinate transform con-
tains targets’ geometric information that can be learned by deep
neural networks for object detection. Compared to radar point
clouds, there is no information loss in radar BEV. Unlike RGB
images, radar BEVs are single-channel grayscale images with
unique characteristics such as inconsistent resolution and SNR.
Therefore, directly implementing an image-based object detection
network is not an optimal solution for object detection using
radar BEV. We propose a Temporal-fusion, Distance tolerant
single stage object detection Network, termed as, TDRadarNet,
to robustly detect vehicles up to 100 meters under various driving
scenarios. DRadarNet leverages historical radar frames to exploit
temporal features and separates far and near fields to address
inconsistent resolution in radar frames. With qualitative and
quantitative results, we show that TDRadarNet achieves 68.9%

in precision and 66.8% in recall, and 67.8% in F1-score, which
outperforms the state-of-the-art image-based object detection
networks by 10.6%, 17.1%, and 14.1%.

Index TermsÐAutomotive radar, machine learning, deep neu-
ral network, autonomous vehicles

I. INTRODUCTION

Object detection and classification are essential for au-

tonomous driving. Humans sense the world through their eyes

and ears and constantly use their brains to perform detection

and classification tasks. Sensors, like human eyes and ears,

allow vehicles to perceive their surroundings. Recently, many

high-performance object detectors based on camera RGB

images and LiDAR point clouds have been proposed [1]±[4].

Although cameras allow us to better understand visual scenes,

their performance suffers in poor weather conditions [5].

LiDAR produces three dimensional (3D) point clouds of the

environment with high-resolution on a good day by reflecting

This work was supported in part by U.S. National Science Foundation
(NSF) under Grant CCF-2153386 and Alabama Transportation Institute (ATI).

laser beams off surrounding objects [6], [7]. However, its

performance degrades significantly in fog, dust, rain or snow.

Further, the average price of LiDAR products is high.

TI Cascaded
mmWave Radar

Teledyne FLIR
Blackfly S

Velodyne Ultra Puck
VLP-32C

Fig. 1. The data acquisition vehicle platform of Lexus RX450h with high-
resolution imaging radar, LiDAR, and stereo cameras, that is used to carry
out field experiments at The University of Alabama.

Radar, on the other hand, is robust, inexpensive, and re-

liable even in harsh environments [5], [8], [9]. Automotive

radar sensor is a fundamental part of advanced driver as-

sistance systems (ADASs) and autonomous vehicles largely

because of its inexpensive circuitry, ability to sense during

inclement weather, and immunity to poor visibility conditions

[5], [8]±[12]. Frequency-modulated continuous-wave (FMCW)

has been widely adopted in automotive radars as transmit

signals to achieve high range resolution sensing at a low-

cost for both commercial vehicles with ADAS features and

fully autonomous vehicles. [13], [14]. The wavelength of the

millimeter-wave automotive radar operating at 76-81 GHz

is in the millimeter range. A high bandwidth of total 4
GHz in carrier frequency 77-81 GHz is available for short-

range and medium-range automotive radars to achieve high

range resolution. Due to the high carrier frequency, the form

factor of automotive radar can be small so that it can be

easily incorporated behind vehicle bumpers [5]. Compared

20
23

 IE
EE

 R
ad

ar
 C

on
fe

re
nc

e 
(R

ad
ar

Co
nf

23
) |

 9
78

-1
-6

65
4-

36
69

-4
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
RA

DA
RC

O
N

F2
35

15
48

.2
02

3.
10

14
96

71

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on June 24,2023 at 15:22:53 UTC from IEEE Xplore.  Restrictions apply. 



with optical sensors such as LiDAR and cameras, millimeter-

wave automotive radar has strong penetration capabilities

in fog, rain, snow, smoke, and dust, making it robust to

bad weather conditions [9]. However, the potential of ob-

ject detection and classification using automotive radar has

not been fully exploited. Today, most radar devices used in

commercial vehicles with Level 2 features, such as adaptive

cruise control function, have a relatively low angular resolution

(around 10◦) and low-end embedded computational unit [5],

producing sparse point clouds, based on which object tracking

is carried out. The Level 4 and Level 5 fully autonomous

vehicles would require dense point clouds or radar imaging

with high angular resolution close to LiDAR [9]. Therefore,

high-resolution automotive imaging radars [13], [15] are of

great interest to support object detection and classification.

Some commercial imaging radar products are available with

different array configurations, such as forward-looking full-

range radar of ZF [16] and ARS540 of Continental [17]. Both

provide radar point clouds only.

Deep learning has found wide application in radar systems

[18], [19]. For example, low-cost radar, such as Soli radar

[20], is used to capture hand-gesture for human-computer

interaction. Short range radar is also proposed in the medical

field to remotely monitor human vital signs [21]. Radar has a

long application history in commercial automobiles [8] since

the 1990s, spanning from ADAS to the recently emerging

autonomous driving techniques [5]. Different automotive radar

data representations have been exploited, which can be roughly

divided into three categories.

1) Radar Point Clouds: Radar data can be represented as

point clouds by applying filtering and thresholding algorithms,

such as constant false alarm rate (CFAR), on the radar range-

azimuth map. In this way, radar produces sparse point clouds,

and thus it can be viewed as a low-quality LiDAR. Point clouds

based object detection networks, such as PointPillars [22],

VoxelNet [23] and PointNets [24], can be directly used or ad-

justed [25] for radar point clouds. However, such thresholding

algorithms in generating radar point clouds lead to significant

information loss of objects.

2) Radar Data Tensor: To avoid loss of information, radar

data can be processed in three-dimensional (3D) tensors,

i.e., range-Doppler-azimuth for one-dimensional (1D) antenna

array, or four-dimensional (4D) tensors, i.e., range-Doppler-

azimuth-elevation for two-dimensional (2D) antenna array.

Deep learning based radar detectors [19] can directly learn

from 4D complex radar tensors for object detection and

localization. It’s also possible to project the 3D radar tensors

along different views to extract 2D features for semantic

segmentation [26] and object recognition [27]±[29].

3) Radar BEV: Radar bird’s-eye-view (BEV) is generated

from a radar range-azimuth map through coordinate trans-

formation. Radar BEVs obtained from high-resolution radar

contain targets’ geometric information. Object detection based

on radar BEV were proposed in [30]±[32], achieving relatively

accurate object detection. However, only highway scene is

considered in [30], which are considered as the clean and

easy scenario in autonomous driving. In [31], the radar is

placed at intersections, and only moving targets in the near

field are of interest. Similarly, objects within ultra short range

are considered in [32].

Taking advantage of temporal and spatial information of

radar data can effectively improve radar detector performance

[33]. Extensive studies have been conducted on the combi-

nation of different radar frames, such as summation among

neighboring frames [26], concatenation in frame level [34],

and stacking in feature level [27], [35]. In [27], a convo-

lutional long short-term memory (LSTM) layer is adopted

after the encoder network to extract temporal features from

a sequence of feature maps. In [35], frame-level feature maps

are concatenated and temporal features are extracted by a 3D

convolutional neural network (CNN) layer. Other than using a

CNN-based network, an isotropic graph convolution network

(GCN) that leverages spatial information from neighboring

nodes is proposed in [36] to boost radar detection performance.

In this paper, we propose a high-resolution radar object de-

tection deep learning network that can robustly detect vehicles

up to 100 meters under various driving scenarios. The pro-

posed network is Temporal-fusion, Distance tolerance Radar

object detection network, termed as TDRadarNet, for vehicle

detection. In this work, we make efforts to leverage historical

radar frames to exploit temporal features and separate far and

near fields to address inconsistent resolution in radar frames,

The evaluation results show that the proposed TDRadarNet

outperforms the state-of-the-art image-based object detection

network (baseline) with 10.6%, 17.1%, and 14.1% improve-

ments in precision, recall, and F1-score, respectively and

demonstrates the effectiveness of the proposed temporal fusion

and far-near-field design, indicating the potential for robust

radar object detection in the real-world driving scenes.

II. TDRADARNET

Unlike RGB images, radar BEVs are single-channel

grayscale images with unique characteristics such as incon-

sistent resolution and SNR. Therefore, directly implementing

an image-based object detection network is not an optimal so-

lution for object detection using radar data. In this section, we

first review the unique characteristics of radar BEVs and then

develop a novel deep neural network, namely TDRadarNet to

identify vehicles from radar BEVs.

A. Not Every Pixel is Created Equally

After applying 3D FFT on a radar data cube along fast-

time, slow-time, and channel, a radar tensor in range-Doppler-

azimuth is obtained, of which the range-azimuth spectra image

is the BEV that can be utilized for machine learning. However,

not every pixel in the BEV is generated with the same

accuracy. In general, the pixels in BEV are sensitive to both

range and angle.

1) Effective Antenna Aperture Relies on Angle: For a uni-

form linear array, the half power beamwidth (HPBW) [37] is

θB ≈
0.886λ

Nd cos θ
, which indicates that the effective array aperture

decreases as the view angle increases. The maximum effective
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antenna aperture or equivalently best angular resolution is

achieved along the boresight direction.

2) SNR Drops As Range Increases: According to the radar

range equation, the received power decreases as the range

increases. The radar receive power of a target of range r with

radar cross-section of σ is [38]:

Pr =
PtCσ

(4π)3r4
, (1)

where C can be considered as a constant number for the same

radar, which includes antenna gain, effective antenna area, and

efficiency; Pt is the transmit power. Therefore, Pr ∝ 1/r4.

Typically, targets at a far distance have lower SNR, as a result

of which, the angle estimation error is relatively large for

targets with long ranges.

3) Information Loss in Coordinate Systems Transform: The

obtained radar range-azimuth spectra are in polar coordinates,

as shown in Fig. 2 (a). Usually, the BEV in polar coordinates

is first transformed or interpolated into a Cartesian coordinate

system before being fed into deep neural networks. It can be

found in Fig. 2 (b) that as the range increases, the distance

between adjacent bins becomes larger. In other words, the

variance of adjacent pixels’ distance in Cartesian coordinate

becomes large for pixels or targets with large ranges [27]. And

that variance is further amplified by the relatively large DOA

estimation error due to SNR drops at long ranges.

Range

-90° 90°0° Azimuth

(a)

Range

RangeRange

(b)

Fig. 2. (a) Polar coordinate and its (b) Cartesian coordinate transformation.

In summary, the radar BEV image obtained using MIMO

radar with non-rotate antenna arrays is hardly shift-invariant.

Instead, it is shift-variant over both angles and ranges.

B. Network Architecture

Because of the above unique radar BEV characteristics, we

propose TDRadarNet as shown in Fig. 3. The TDRadarNet

consists of two identical networks that are trained to detect

objects in far and near fields, respectively. The input sequences

of radar frames are divided into overlapped sequences of far

fields and near fields. For each sequence, we use a backbone to

extract features frame-wise, and then we develop the temporal

fusion stage to explore the frame relationship with the histor-

ical frames, lastly, with the predictions made by the detection

head, we merge the far field and near field result. The proposed

network is inspired by You Only Look Once v7 (YOLO) [39]

and optimized for radar BEVs by learning different features

of far and near fields and integrating temporal information of

historical radar frames, the details are as follows:

tim
e

Far

Near

Backbone

Detection Head

2D object detection results in far

field

Temporal Fusion

Backbone

Detection Head

2D object detection results in near

field

Temporal Fusion

Merge

Final 2D object detection results 

... ...

... ...

... ...

... ...

Fig. 3. TDRadarNet. Far-near fields are divided and used to train two sets
of learnable parameters of the model. Temporal fusion works by extracting
temporal features from a sequence of frames.

1) Far and Near Fields: Due to the resolution difference in

the radar BEVs, objects present varying intensity, shape, and

contrast, thus it is challenging for a single model to detect

the same objects with a large dissimilarity. We divide the

radar frame into two overlapping regions, the far field and

the near field, as shown in Fig. 3. The overlapping dividing

strategy ensures that no information is lost across boundaries.

The divided regions are sent to separate tracks to train the

deep learning model which learns two sets of parameters for

predicting the object in far and near fields, respectively.

2) Temporal Fusion: Even though the predictions can be

made with the current radar frame, using historical frames can

contribute temporal information. As shown in Fig. 4, with a

sequence of n frames, the backbone extracts feature maps of

three scales for each frame, resulting 3× n feature maps. We

concatenate the feature maps that belong to the same scale, and

then use a convolution kernel followed by batch normalization

and ReLu activation to extract the features along the temporal

direction.
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Fig. 4. Temporal fusion module. Feature maps extracted from N consecutive
frames are concatenated in three scales separately. The temporal features
are then extracted by applying a convolution kernel followed by batch
normalization and ReLu activation.

3) Merging: After we collect the object detection results in

the far field and near field, we merge the results into a single

frame. For the duplicated detections in the common region of

both fields, we apply the non-maximum suppression to filter

out largely overlapped detections by setting the intersection

of union (IoU) threshold. The detection with the highest

confidence score will be kept if multiple detections share the

same intersection.

III. EXPERIMENTS

In this section, we collect our automotive radar dataset,

BAMA, through field experiments. The BAMA dataset con-

tains high-resolution radar BEVs with corresponding stereo

camera images and LiDAR point clouds. To our best knowl-

edge, there is no existing automotive radar dataset with high

angular resolution and up to a 100 meter detectable range. We

evaluate TDRadarNet with the BAMA dataset quantitatively

and qualitatively by comparing it with a baseline model and

performing ablation experiments.

A. BAMA Dataset

Our field experiments included three multi-modal sensors,

i.e., a TI imaging radar, stereo cameras of Teledyne FLIR

Blackfly S, and Velodyne Ultra Puck VLP-32C LiDAR, as

shown in Fig. 1. The measurements of cameras and LiDAR

are used as ground truth for labeling the radar data. The sensor

features are summarized in Table I.

Sensors Model

Radar TI Imaging Radar, Azimuth Resolution: 1.2
◦

, Azimuth FOV: 70
◦

LiDAR Velodyne Ultra Puck VLP-32C, Azimuth Resolution: 0.1
◦

- 0.4
◦

Vertical FOV: 40
◦

, Maximum Range: 200 m

Camera Teledyne FLIR Blackfly S, Stereo, Image Resolution: 2048× 1536

TABLE I
MULTI-MODAL SENSORS.

We drove over 30 minutes to collect data around the city

of Tuscaloosa, Alabama, USA. Our driving route is shown in

Fig. 5 (a), which consists of three types of driving scenarios,

such as campus road, urban street, and highway.

BAMA dataset contains 14, 800 radar BEV frames, which

are generated by a deep learning aided TDM MIMO radar

signal processing pipeline [40], with synchronized stereo cam-

era images and LiDAR 3D point clouds. There are different

(a) (b)

Fig. 5. (a) Data collection route in the city of Tuscaloosa, AL, USA. The lines
with different colors denote the different driving scenarios. Yellow: campus
road; Red: urban street; Green: highway. (b) Vehicle range distribution.

types of objects of interest, including pedestrians, cars, trucks,

and buses. For simplicity, in this paper, we focus on vehicle

detection only [41]. A total number of 42, 390 vehicles at

various ranges are labeled using camera images and LiDAR

3D point clouds as ground truth. Vehicle range distribution is

shown in Fig. 5 (b). Examples under various driving scenarios

are shown in Fig. 6.

B. Implementation Details

From 14, 800 high-resolution radar BEV frames, we use

11, 500 for training and 3, 300 for testing. The single frames

dataset is used for the baseline training. For the proposed

TDRadarNet, we use the sequence of radar frames as input

and the last frame annotation as reference. The sequences of

radar frames are overlapping in time order so that each frame

is guaranteed to be trained and evaluated. The experiment

was built in Python 3.8, PyTorch 1.10, CUDA 11.1 on 4
Nvidia RTX A6000 GPUs. The baseline model YOLO using

single frame dataset was trained 200 epochs with a batch

size of 8. For the TDRadarNet, the model was trained 200
epochs to ensure convergence, with a batch size of 8, and a

linear decaying learning rate initialized as 0.001. Besides, we

performed two ablations experiments to evaluate the far-near

field and temporal fusion design, with all the hyperparameters

the same as the implementation of TDRadarNet.

C. Results and Discussion

We evaluate the detection performance using precision,

recall, and F1-score with an IoU of 0.5. The metrics are

defined below.

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 =
2× precision× recall

precision + recall
, (4)

where the true positive (TP) is the correct positive prediction,

the false positive (FP) is the incorrect positive prediction, and

the false negative (FN) is the incorrect negative prediction.

The quantitative evaluation results are shown in Table. II.

The proposed TDRadarNet leads to obvious improvement over

Authorized licensed use limited to: UNIV OF ALABAMA-TUSCALOOSA. Downloaded on June 24,2023 at 15:22:53 UTC from IEEE Xplore.  Restrictions apply. 



YOLOv7
YOLOv7+

Far-near field
YOLOv7+

temporal fusion TDRadarNet Ground Truth Camera
C

a
m

p
u

s
H

ig
h

w
a

y
U

rb
a

n

0

100

50-50

R
a
n
g
e
 (

m
)

Cross Range (m)

Fig. 6. Examples from our test set. Detection results are marked in red. (Note: The pixels represent locations beyond 100m from ego-vehicle (0,0) are set
as zeros, corresponding to dark pixels.)

the baseline model by 10.6% in precision, 17.1% in recall, and

14.1% in F1-score. For the far-near field design and temporal

fusion design, the ablated models generally outperform the

baseline method.

The representative detection results over three scenarios,

the corresponding original radar frames, and ground truth

annotations are shown in Fig. 6. The observations overall agree

with the quantitative evaluation. The proposed TDRadarNet

has shown superior capability in detecting objects in both far

and near fields and performs well in the campus and highway

scenarios where fewer data (n=1, 700 and 2, 300, respectively)

are available compared to the urban scenario (n=7, 500).

D. Ablation Study

For the far-near field design and temporal fusion design,

the ablated experiments are conducted as, YOLOV7, YOLOv7

plus far-near-field only, YOLOv7 plus temporal fusion only,

and TDRadarNet with two designs. The evaluation results are

shown in Table. II. With adding the far-near-field design or

temporal fusion design, the improved performance is observed

in all three metrics. In the second column of Fig. 6, the

implementation of far-near field not only helps to detect

vehicles that are far in distance and have lower resolution,

but also improves the detection in the near field, by learning

field-specific features respectively. In addition, compared to

the baseline model, the temporal fusion also shows better per-

formance, especially in the example of the highway scenario,

in providing accurate and complete predictions.

IV. CONCLUSIONS

The proposed TDRadarNet innovatively combines temporal

fusion and far-near field designs into vehicle detection tasks

for the radar BEV dataset. We investigate and compare the

Networks Precision Recall F1-score

YOLOv7 58.3% 49.7% 53.7%
YOLOv7+far-near field 62.8% 57.9% 60.2%

YOLOv7+temporal fusion 67.9% 59.0% 63.2%
TDRadarNet 68.9% 66.8% 67.8%

TABLE II
OBJECT DETECTION RESULTS OF DEEP LEARNING MODELS IN PRECISION,

RECALL, AND F-1 SCORE.

detection performance of TDRadarNet with baseline model.

The result proves that the proposed model is superior to the

baseline model in producing accurate results. The ablation

experiments demonstrate the effectiveness of the two designs.

The potential limitation of TDRadarNet could be the extra

computational cost introduced by the temporal fusion over a

sequence of frames. Besides, an investigation of the tradeoff

between the number of historical frames fed into neural

network and detection accuracy is desired. The imbalance of

radar BEVs in different ranges and driving scenarios could

be an issue that would impact the TDRadarNet training and

detection performance. To overcome the limitations, in future

work, we plan to investigate the lightweight deep learning de-

tection model, conduct additional experiments to optimize the

number of historical frames in a sequence, and implement data

augmentation for limited available driving scenarios to further

enhance the TDRadarNet detection accuracy and efficiency.
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