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Abstract—Automotive radar with sparse arrays are highly desired,
as a sparse array has a smaller number of elements compared to a
uniform linear array (ULA) of the same physical aperture size, resulting
in lower system cost, increased flexibility, and reduced mutual coupling
between antennas. However, this leads to an increase in sidelobes in the
angle spectrum and higher signal processing complexity. Interpolation
techniques can help reduce sidelobe levels, mitigating ambiguity in angle
estimation with sparse arrays, and improving the ability to distinguish
desired signals from interference. In this paper, we investigate transform
matrix optimization technique to interpolate a virtual sparse array (VSA)
synthesized by automotive multi-input multi-output (MIMO) radar to a
ULA so that high-resolution direction-of-arrival estimation algorithms
that are designed for ULA can be applied to VSA to achieve high-
resolution radar imaging. Our simulation results in the one dimensional
(1D) sparse arrays demonstrate the feasibility and effectiveness of this
technique.

Index Terms—Automotive radar, sparse array, array interpolation,
direction-of-arrival estimation

I. INTRODUCTION

Autonomous driving requires accurate and reliable detection of
objects, including vehicles, pedestrians, and obstacles, in the highly
dynamic environment. Radar-based sensing systems are one of the
most commonly used technologies for object detection in autonomous
driving due to their ability to provide accurate distance and velocity
measurements regardless of lighting and weather conditions [1, 2].
In radar-based sensing systems, sparse arrays can achieve a larger
antenna array aperture by deploying antenna elements in a non-
uniform spacing pattern, offering higher resolution while maintaining
a lower cost over the uniform linear array with half wavelength
spacing and same number of antenna elements [2].

The phase discontinuity nature of sparse arrays would result in high
sidelobes, presenting a challenge for resolving targets’ angles. Com-
pressed sensing (CS) can be applied for angle estimation on sparse
arrays. However, the construction of the CS dictionary and solving the
relaxed l1 norm optimization problem is of high computational cost.
Further, CS suffers from off-grid issue [3, 4]. Subspace based super
resolution angle finding methods, such as MUSIC and ESPRIT, are
suitable for well-structured sparse arrays [5]. For example, to apply
ESPRIT, the sparse arrays may consist of multiple identical shifted
sparse subarrays that satisfying the rank properties [6], and careful
angle unfolding design is required to mitigate the angle ambiguity due
to large shift among subarrays [5]. However, applying the subspace
methods to coherent signals can be difficult, since it is challenging
to apply the spatial smoothing technique to sparse arrays [6]. The
popular difference coarrays, such as nested array [7] and coprime
array [8], can resolve the number of targets that is much larger than
the number of physical array elements. However, these difference
coarrays rely on the accurate estimation of the array covariance
matrix, which requires a large number of snapshots in a wide-sense
stationary (WSS) process scenario [7, 9], which is a big challenge

in highly dynamic automotive scenarios [10, 11]. In addition to
sparse array angle finding, machine learning can also be used to
identify patterns and relationships in received data. This method
involves training a machine learning model on a large dataset to
learn the relationship between received signals and angles of arrival.
The model can then estimate the angle of arrival of new signals [12–
14]. However, a large number of training datasets are required for
this method to work effectively. Insufficient training data may lead
to poor generalization performance and biased estimated results.

The array response of a uniform linear array (ULA) has a Vander-
monde structure, which is crucial for applying many essential angle
estimation algorithms. Thus, it is desired to transform a sparse array
into a uniform linear array with interpolation techniques. This trans-
formation enables the use of algorithms that are designed for uniform
linear arrays, such as the matrix pencil [15], for angle estimation in
sparse arrays. Numerous interpolation techniques are available for the
recovery or approximation of missing data in sparse datasets, such as
transformation matrices [16–19], linear regression [20], and matrix
completion methods [2, 21–24]. The linear regression method, in
particular, is effective for non-random sparse arrays, which demands
a homogeneous linear model capable of predicting coefficients for
missing data. On the other hand, the matrix transformation method is
typically well-suited for scenes with a limited field of view (FOV) due
to the necessity for discretization. Excessively large FOVs can result
in diminished interpolation accuracy. The matrix completion method
offers flexibility in designing sparse array geometries to facilitate the
filling of missing elements. However, its computational cost is notably
high, primarily attributed to the singular value decomposition (SVD)
operation in each iteration [25].

In this paper, we investigate the sparse array interpolation for
automotive MIMO radar using transform matrix. The automotive
MIMO radar is first optimized to have minimal peak sidelobe level.
Subsequently, various approaches are investigated to design the
optimal transform matrix to interpolate a virtual sparse array (VSA)
into a ULA. To improve the interpolation performance, the array FOV
is divided into multiple sectors, and array interpolation is carried out
sector-by-sector. The out-of-sector suppression is considered in the
sector-based interpolation optimization to minimize high sidelobe in
the out-of-sector regions. The effectiveness of the virtual sparse array
interpolation is verified through numerical results.

II. SYSTEM MODEL OF AUTOMOTIVE MIMO RADAR

Let’s consider K narrow-band, far-field signals impinging onto a
one dimensional (1D) colocated sparse multi-input and multi-output
(MIMO) array with N transmitters and M receivers, located at dtn
for n = 1, 2, · · · , N and drm for m = 1, 2, · · · ,M , respectively.
Define Dt = {dt1, · · · , dtN} and Dr = {dr1, · · · , drM}. Assume
the transmit waveform from different transmitters are orthogonal so
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that the contribution of each transmitter can be easily separated at
the receive antenn array using matched filter.

The received data matrix Y ∈ CM×N can be written as [26]

Y = ArSA
T
t +W, (1)

where At ∈ CN×K and Ar ∈ CM×K are the transmit and receive
array steering matrices with At = [at(θ1),at(θ2), · · · ,at(θK)] and
Ar = [ar(θ1),ar(θ2), · · · ,ar(θK)], respectively. Here, the transmit
and receive array steering vectors are

at(θk) =
[
e
j 2π

λ
dt1sin(θk), · · · , ej

2π
λ

dtN sin(θk)
]T

, (2)

ar(θk) =
[
e
j 2π

λ
dr1sin(θk), · · · , ej

2π
λ

drM sin(θk)
]T

. (3)

The diagonal matrix S = diag{[β1, · · · , βK ]} contains the target’s
radar cross-section (RCS), and W is the noise matrix. The receive
data matrix can be rearranged as a long vector y ∈ CMN×1 through
vectorization, i.e.,

y = vec(Y) = At ⊗Arvec(S) + vec(W). (4)

Here, ⊗ denotes the Kronecker product. Noting that matrix S is
diagonal, we can rewrite equation (4) as

y = As+w, (5)

where A = [a(θ1), · · · ,a(θK)] ∈ CMN×K is the virtual array
manifold, with a(θk) = at(θk)⊗ ar(θk). Here, s = [β1, · · · , βK ]

T

and w = vec (W). It can be verified that automotive MIMO radar
achieves a large virtual array aperture with MN elements using only
N transmit and M receive antennas, thus saving the hardware cost.

To further reduce the hardware cost, we aim to design automotive
MIMO radar by exploiting sparse arrays. In automotive MIMO radar,
the sparse array design boils down to select N transmit antennas from
a ULA with NT array elements, and M receive antennas from a ULA
with MR elements. Here, MT > M and NT > N . Assume the field
of view of virtual array is [−θc, θc]. The main beam is within the
region Ωp of

[
−θp, θp

]
, and the main beam width is determined by

the virtual array aperture. Consequently, the sidelobe region Ωs is[
−θc,−θp) ∪ (θp, θc

]
.

The resulting irregular virtual sparse array (VSA) has high side-
lobe, which may introduce ambiguity for direction-of-arrival estima-
tion. The positions of VSA elements are

d̄ = [dt1 + dr1, · · · , dt1 + drM , · · · , dtN + drM ] ∈ RMN×1
.
(6)

Assume the MIMO transmit and receive arrays are designed such that
there are no repeated values in d̄. In other words, all the values of
d̄ are unique. Let d = [d1, · · · , dMN ] denote the sorted positions of
VSA elements d̄ in an increasing order, where di, i = 1, · · · ,MN
are the positions of the i-th virtual element. The aperture of VSA is
D = dMN − d1. The array manifold of the VSA is

aVSA (θk) =
[
e
j 2π

λ
d1 sin(θk), e

j 2π
λ

d2 sin(θk), · · · , ej
2π
λ

dMN sin(θk)
]T

.

(7)

To overcome the challenge associated with VSA, we aim to
interpolate the VSA into a ULA with the same aperture and element
spacing of half-wavelength d = λ/2. The array manifold of the
interpolated ULA is

aULA (θk) =
[
1, e

j 2π
λ

d sin(θk), · · · , ej
2π
λ

(Q−1)d sin(θk)
]T

, (8)

where Q is the number of elements in ULA and Q = 2D/λ > MN .

III. SPARSE ARRAY INTERPOLATION OPTIMIZATION

The virtual sparse array is first optimized to have minimal peak
sidelobe level (PSL) before carrying out interpolation. Transform
matrix is then introduced to interpolate the optimized virtual sparse
array into a uniform linear array with the same aperture. To enhance
the interpolation result, the entire FOV is typically divided into
multiple sectors, and interpolation is done sector-by-sector.

A. Sparse Array Peak Sidelobe Level Optimization

Interpolation of a sparse virtual array with minimal PSL can yield
better results than interpolating a randomly generated sparse array.
Therefore, before carrying out the array interpolation, it is desired
to optimize the sparse virtual array geometry such that its PSL is
minimized [27]. The array factor (AF) of the virtual sparse array is

AF (θ,Dt,Dr) =
∑MN

i=1
e
j2πdi sin(θ)

. (9)

Then, the peak sidelobe level (PSL) of the virtual array is defined as

PSL = max
θ∈Ωs

20 log |AF (θ,Dt,Dr)| . (10)

Numerically, the PSL can be calculated by discretizing the sidelobe
region Ωs with step size of ∆θ and the maximum value of the array
factor in the sidelobe region is defined as PSL. Here, ∆θ represents
the angle resolution determined by the virtual array aperture size.
Sparse array optimization aims to minimize the PSL by adjusting the
antenna positions Dt, Dr , i.e.,

min
Dt,Dr

max
θ∈Ωs

20 log |AF (θ,Dt,Dr)| . (11)

The transmit and receive antennas positions Dt, Dr can be inter-
leaved. In practice, it is imperative that all transmit and receive arrays
are within the feasible aperture size D with minimal separation of ∆
for antenna fabrication and reduction of mutual coupling. The PSL
minimization problem considering the minimal separation among
physical transmit and receive antennas are formulated as

min
Dt,Dr

max
θ∈Ωs

20 log |AF (θ,Dt,Dr)|

s.t. |dtn − dtl| ≥ ∆, ∀ dtn ∈ Dt, ∀ dtl ∈ Dt, n ̸= l∣∣drm − drp
∣∣ ≥ ∆, ∀ drm ∈ Dr, ∀ drp ∈ Dr,m ̸= p

|dtn − drm| ≥ ∆, ∀ dtn ∈ Dt, ∀ drm ∈ Dr (12)

The PSL optimization problem is challenging to solve, especially if
the locations of the transmit and receive antennas are on-grid with
grid size of half wavelength. Usually, heuristic algorithms such as
particle swarm optimization [28] can be applied to speed up the
search process [29].

B. Sparse Array Interpolation with Transform Matrix

A transform matrix T ∈ CQ×MN can be utilized to interpolate
the VSA into a ULA [16]. Mathematically, the transform matrix is
designed such that

TaVSA(θk) ∼= aULA(θk), ∀θk ∈ [−θc, θc] . (13)

The matrix T serves as a calibration dictionary.
To obtain the transform matrix T, we define the cost function C

as follows

C =

ˆ
∥ TaVSA(θk)− aULA(θk) ∥2 ω(θ)dθ (14)

where the ω(θ) is the weighting. Closed-form solutions, such as least
square (LS) and the singular value decomposition (SVD), can be
employed to obtain the transform matrix T by minimizing the cost
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function C [27]. Additionally, convex optimization methods can also
be applied to obtain the transform matrix T [30].

1) Least square closed-form solution: The least square solution
of obtaining transform matrix T by minimizing the cost function C
is given by [27] T = FG

−1, where

F =

ˆ
aULA(θ)a

H
VSA(θ)ω(θ)dθ,

G =

ˆ
aVSA(θ)a

H
VSA(θ)ω(θ)dθ.

(15)

To ensure the invertibility of G and mitigate instability, particularly
when the condition number is too large, one approach is to minimize
its condition number. The condition number is related to the sparsity
of the array, i.e., the number of antenna elements, and the sparse
array geometry.

2) Optimization toolbox solution: The array FOV can be dis-
cretized with a small angle step ∆θ, resulting in the interpolated set

Ω = {−θc,−θc +∆θ,−θc + 2∆θ, . . . , θc} (16)

with cardinality of P =
2θc
∆θ

+1. The array manifolds corresponding
to the VSA and ULA are denoted by

AVSA = [aVSA(−θc),aVSA(−θc +∆θ), · · · ,aVSA(θc)] ,

AULA = [aULA(−θc),aULA(−θc +∆θ), · · · ,aULA(θc)] .
(17)

The transform matrix T is designed such that

TAVSA
∼= AULA. (18)

Matrix T is obtained by minimizing the interpolation error under
Frobenius norm, i.e.,

min
T

∥ TAVSA −AULA ∥F . (19)

The CVX toolbox [31] can be applied to solve the optimization
problem (19) efficiently.

3) Rotational signal subspace solution: It has been shown that a
good transform matrix is unitary [32]. Therefore, the transform matrix
T is obtained by minimizing the Frobenius norm of the interpolation
error subject to a unitary constraint, i.e.,

min
T

∥ TAVSA −AULA ∥F

s.t. T
H
T = I (20)

Sparse array interpolation using the transform matrix will rotate the
narrow-band signal subspace spanned by {AVSA} so that it is close
to the narrow-band signal subspace spanned by {AULA} in the
Frobenius norm sense. The rotational signal subspace solution [32]
of matrix T is given as

T = VU
H
, (21)

where U ∈ CMN×P and V ∈ CQ×P are left and right singular
vectors of matrix AVSAA

H
ULA, i.e.,

AVSAA
H
ULA = UΣV

H
. (22)

C. Sector-Based Transform Matrix Design

It is challenging to have a single transform matrix T that works
well for the whole discretized FOV set Ω. Instead, the whole FOV
can be divided into Ns sectors Ψi ⊂ Ω for i = 1, · · · , Ns.
Then interpolation is carried out sector-by-sector. For sector-based
interpolation, the challenges lie in the impact of out-of-sector sources.
Without suppression of the sources out of the interpolated sector, it
can notably impact angle-finding performance.

A mask matrix, M ∈ RQ×P , can be adopted to control the
interpolation response of both in-sector and out-of-sector. With the
mask matrix, the interpolation problem (19) is updated as

min
T

∥ TAVSA −M⊙AULA ∥F , (23)

where ⊙ denotes the Hadamard product. The design of the mask
matrix M is flexible, provided it satisfies the following requirements:
(i) the ability to suppress out-of-sector signals to facilitate effective
sector-by-sector processing, and (ii) the columns of M corresponding
to the in-sector region are set to 1, a vector with all elements as 1,
implying that the in-sector response should be the same as the ULA.
The sector-based transform matrix can be obtained by solving the
optimization problem of (23) using CVX toolbox.

An alternative approach to mitigate the influence of signals from
the out-of-sector is to reformulate equation (23) as

min
T

max
m

∥ TaVSA(θm)− aULA(θm) ∥p, θm ∈ Ψi

s.t. ∥ TaVSA(θk) ∥p≤ γ, θk ∈ Φ (24)

Here, Ψi and Φ denote the i-th in-sector and out-of-sector, re-
spectively. The positive small number γ quantifies the out-of-sector
interpolation attenuation. When p-norm is replaced with l2-norm,
the optimization problem (24) becomes a convex quadratically con-
strained quadratic programming (QCQP) problem, which can be
solved efficiently using the CVX toolbox.

However, it is difficult to achieve a flat interpolation error over
the in-sector region under l2-norm in problem (24). It is shown that
opting for l1-norm for interpolation error and l∞-norm for out-of-
sector attenuation in (24) allows for bounding the interpolation error
[33]. The new optimization problem is

min
T

max
k

∥ TaVSA(θk) ∥∞, θk ∈ Φ

s.t. ∥ TaVSA(θm)− aULA(θm) ∥1≤ ε, θm ∈ Ψi (25)

Here, ε denotes the predefined interpolation error level. The optimiza-
tion problem (25) can be casted as a linear programming problem,
and solved more efficiently than the QCQP problem of (24).

IV. NUMERICAL RESULTS

A single automotive radar chipset with N = 3 transmit and
M = 4 receive antennas is considered in the simulation which can
synthesize virtual sparse array with 12 elements using MIMO radar
technique. The virtual sparse array geometry is first optimized to yield
minimal PSL, as shown in Fig. 1. The optimal transmit and receiver
antennas are located at Tx = [1, 9, 18]λ/2 and Rx = [1, 3, 6, 7]λ/2,
respectively. The virtual sparse array aperture is D = 11.5λ. We
first conduct Monte Carlo simulation in the interpolation region
Ψ =

[
−30

◦
, 30

◦] that is discretized with step size of ∆θ = 1
◦.

The target angles are from −25
◦ to 25

◦ and dynamic range are from
15dB to 30dB. Chebyshev window with 30dB sidelobe suppression
is adopted on the interpolated array measurements before 512-point
fast Fourier transforms (FFTs) are carried out. To utilize the transform
matrices obtained through different optimization approaches, the FFT
spectra under different obtained transform matrices are combined by
taking the minimal values for each FFT index to yield the final angle
spectrum, spfull.

Fig. 2 shows the angle spectrum comparison for signal-to-noise
ratio (SNR) of 20dB. The sparse virtual array angle spectrum is
obtained by performing FFT on the sparse array measurement filled
with zeros in the positions of missing elements. It can be seen
that the angle spectrum of the interpolated array has much higher
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amplitudes in the targets’ directions, and lower sidelobe levels. The
angle spectrum under full array is plotted for comparison.

We then verify the interpolation performance of transform matrix
under different interpolation region sizes. Three interpolation regions
of

[
−25

◦
, 25

◦], [
−30

◦
, 30

◦], and
[
−35

◦
, 35

◦] are tested on the
same MIMO virtual array shown in Fig. 1. For a fair comparison,
the performance of different-sized interpolation regions is evaluated
on the same target set that includes 2 and 3 targets with different
separations, respectively.

The performance comparison for different-size interpolation sec-
tors are plotted in Fig. 3, where the probability of target separation
and DOA estimation error are calculated by employing the key
performance indicator (KPI). The initial stage of the KPI analysis
involves identifying peaks within the estimated angle spectrum. The
angle estimation error is averaged over Monte Carlo runs. In cases
when there is an insufficient number of peaks, a random error is
drawn from a uniform distribution spanning the field of view. An
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, 35
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approximated probability density function (PDF) is generated for
each target, relying on the error histogram as a basis. To obtain the
2σ angle estimation error, the absolute values of angle-finding errors
from all targets are computed and arranged in ascending order. The
sorted absolute error vector serves as the x-coordinate values, while
the normalized element indices of the error vector (increasing mono-
tonically from L

−1
sample to 1, where Lsample is the number of error

samples) act as the y-coordinate values. This arrangement facilitates
the definition of the approximated cumulative density of function
(CDF) for absolute angle-finding errors. In these plots, the 95% point
is determined as the 2σ bound of the angle error. From Fig. 3, it is
evident that the smallest interpolation region

[
−25

◦
, 25

◦] yields the
best estimation performance. As the interpolation region expands, the
performance tends to decrease. The larger the interpolation area, the
poorer the estimation outcome tends to be.

V. CONCLUSION

This paper presented a comprehensive study on optimizing sparse
array interpolation for automotive MIMO radar systems through
the development of an optimal transform matrix. Various strategies
has been investigated for designing an optimal transform matrix,
enabling the effective interpolation of a virtual sparse array into a
uniform linear array. A sector-based interpolation was introduced,
allowing for more precise and targeted interpolation. This method also
incorporates out-of-sector suppression to significantly reduce high
sidelobes in adjacent sectors, enhancing overall system performance.
The practical applicability and efficiency of the proposed virtual
sparse array interpolation method were substantiated with numerical
results, demonstrating its potential for significant improvements in
automotive MIMO radar.

REFERENCES

[1] S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for advanced
driver-assistance systems and autonomous driving: Advantages and
challenges,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 98–117,
2020.

[2] S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous
vehicles: A sparsity-oriented approach,” IEEE J. Sel. Topics Signal
Process., vol. 15, no. 4, pp. 879–891, 2021.

[3] M. Guo, Y. D. Zhang, and T. Chen, “DOA estimation using compressed
sparse array,” IEEE Transactions on Signal Processing, vol. 66, no. 15,
pp. 4133–4146, 2018.

[4] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity
to basis mismatch in compressed sensing,” IEEE Trans. Signal Process.,
vol. 59, no. 5, pp. 2182–2195, 2011.

[5] L. Xu and S. Sun, “Coprime visible regions assisted angle unfolding for
sparse ESPRIT,” in IEEE Radar Conference, San Antonio, TX, May,
1-5, 2023.

[6] P.-C. Chen and P. Vaidyanathan, “Rank properties of manifold matrices
of sparse arrays,” in 2021 55th Asilomar Conference on Signals, Systems,
and Computers. IEEE, 2021, pp. 1628–1633.

[7] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array
processing with enhanced degrees of freedom,” IEEE Transactions on
Signal Processing, vol. 58, no. 8, pp. 4167–4181, 2010.

[8] P. P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime samplers
and arrays,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 573–586,
2011.

[9] S. Qin, Y. D. Zhang, and M. G. Amin, “Generalized coprime array
configurations for direction-of-arrival estimation,” IEEE Transactions on
Signal Processing, vol. 63, no. 6, pp. 1377–1390, 2015.

[10] J. Li, R. Wu, I.-T. Lu, and D. Ren, “Bayesian linear regression with
Cauchy prior and its application in sparse MIMO radar,” IEEE Trans-
actions on Aerospace and Electronic Systems, in press, 2023.

[11] L. Xu, S. Sun, K. V. Mishra, and Y. D. Zhang, “Automotive FMCW
radar with difference co-chirps,” IEEE Transactions on Aerospace and
Electronic Systems, in press, 2023.

[12] G. K. Papageorgiou and M. Sellathurai, “Fast direction-of-arrival es-
timation of multiple targets using deep learning and sparse arrays,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2020, pp. 4632–4636.

[13] R. Zheng, S. Sun, H. Liu, and T. Wu, “Deep-neural-network-enabled
vehicle detection using high-resolution automotive radar imaging,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 59, no. 5, pp.
4815–4830, 2023.

[14] J. Youn, S. Ravindran, R. Wu, J. Li, and R. van Sloun, “Circular
convolutional learned ISTA for automotive radar DOA estimation,” in
2022 19th European Radar Conference (EuRAD), 2022, pp. 273–276.

[15] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parame-
ters of exponentially damped/undamped sinusoids in noise,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 38, no. 5, pp. 814–824, 1990.

[16] B. Friedlander and A. J. Weiss, “Direction finding for wide-band signals
using an interpolated array,” IEEE Transactions on Signal Processing,
vol. 41, no. 4, pp. 1618–1634, 1993.

[17] P. Hyberg, M. Jansson, and B. Ottersten, “Array interpolation and bias
reduction,” IEEE Transactions on Signal Processing, vol. 52, no. 10, pp.
2711–2720, 2004.

[18] B. K. Lau, G. J. Cook, and Y. H. Leung, “An improved array interpola-
tion approach to DOA estimation in correlated signal environments,” in
2004 IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 2. IEEE, 2004, pp. ii–237.

[19] T. K. Yasar and T. E. Tuncer, “Wideband DOA estimation for nonuni-
form linear arrays with Wiener array interpolation,” in 2008 5th IEEE
Sensor Array and Multichannel Signal Processing Workshop. IEEE,
2008, pp. 207–211.

[20] C. Alcalde and Z. Li, “Detector device including a shifted multi-
dimensional array of detector elements,” U.S. Patent 10,725,152, July
28, 2020.

[21] S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, “DOA estimation
exploiting interpolated multi-frequency sparse array,” in 2020 IEEE 11th
Sensor Array and Multichannel Signal Processing Workshop (SAM).
IEEE, 2020, pp. 1–5.

[22] S. Sun and Y. D. Zhang, “Multi-frequency sparse array-based massive
MIMO radar for autonomous driving,” in 2020 54th Asilomar Confer-
ence on Signals, Systems, and Computers, 2020, pp. 1167–1171.

[23] S. Sun and A. P. Petropulu, “A sparse linear array approach in automotive
radars using matrix completion,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process. (ICASSP), Barcelona, Spain, May 2020, pp.
8614–8618.

[24] S. Zhang, A. Ahmed, Y. D. Zhang, and S. Sun, “Enhanced DOA
estimation exploiting multi-frequency sparse array,” IEEE Transactions
on Signal Processing, vol. 69, pp. 5935–5946, 2021.

[25] S. Sun, Y. Wen, R. Wu, D. Ren, and J. Li, “Fast forward-backward
Hankel matrix completion for automotive radar DOA estimation using
sparse linear arrays,” in 2023 IEEE Radar Conference (RadarConf23).
IEEE, 2023, pp. 01–06.

[26] S. Sun, W. U. Bajwa, and A. P. Petropulu, “MIMO-MC radar: A MIMO
radar approach based on matrix completion,” IEEE Trans. Aerosp.
Electron. Syst., vol. 51, no. 3, pp. 1839–1852, 2015.

[27] C. Greiff, F. Giovanneschi, and M. A. Gonzalez-Huici, “Matrix pencil
method for DOA estimation with interpolated arrays,” in 2020 IEEE
International Radar Conference (RADAR). IEEE, 2020, pp. 566–571.

[28] N. Jin and Y. Rahmat-Samii, “Advances in particle swarm optimization
for antenna designs: Real-number, binary, single-objective and multiob-
jective implementations,” IEEE Trans. Antennas Propag., vol. 55, no. 3,
pp. 556–567, 2007.

[29] R. Zheng, S. Sun, W. Kuo, T. Abatzoglou, and M. Markel, “4D automo-
tive radar exploiting sparse array optimization and compressive sensing,”
in 57th Asilomar Conference on Signals, Systems, and Computers, 2023.

[30] M. Pesavento, A. B. Gershman, and Z.-Q. Luo, “Robust array interpo-
lation using second-order cone programming,” IEEE Signal Processing
Letters, vol. 9, no. 1, pp. 8–11, 2002.

[31] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.

[32] H. Hung and M. Kaveh, “Focussing matrices for coherent signal-
subspace processing,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 8, pp. 1272–1281, 1988.

[33] M.-Y. Cao, S. A. Vorobyov, and A. Hassanien, “Transmit array inter-
polation for DOA estimation via tensor decomposition in 2-D MIMO
radar,” IEEE Transactions on Signal Processing, vol. 65, no. 19, pp.
5225–5239, 2017.

1219

Authorized licensed use limited to: The University of Alabama. Downloaded on April 02,2024 at 13:56:45 UTC from IEEE Xplore.  Restrictions apply. 


