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Abstract—Automotive multiple-input multiple-output (MIMO)
radar with sparse linear arrays is a cost-effective solution to
achieve large aperture size with low hardware cost and reduced
mutual coupling. The challenges associated with automotive
MIMO sparse linear arrays are the high sidelobes, which might
result in angular detection errors. This paper presents a fast
forward-backward Hankel matrix completion and matrix pencil
method for joint array interpolation and super-resolution single-
snapshot angle finding by exploiting the structure of Hankel
matrix. The novelty of the proposed approach lies in two parts.
It not only saves the computational cost of singular value
decomposition (SVD) in each iteration of the matrix completion,
but also increases the degrees of freedom to construct a low-rank
matrix with larger dimensions using the same number antenna
elements, as a result of which, more targets can be completed and
estimated with better accuracy. Numerical results demonstrate
the effectiveness and efficiency of the proposed method.

Index Terms—Sparse arrays, array interpolation, forward
backward Hankel matrix, direction-of-arrival estimation, matrix
pencil.

I. INTRODUCTION

Millimeter wave (mmWave) radar can cope well with

various weather and lighting conditions, and achieve reliable

target perception at a lower cost than LiDAR. As a

result, they are viewed as a key enabling technology

to support autonomous driving [1]–[6]. Most automotive

radar systems employ frequency-modulated continuous-wave

(FMCW) transmit signals at the millimeter-wave band

to achieve low-cost high-resolution sensing for complex

functions during autonomous driving, such as automatic

emergency braking, blind-spot detection, and adaptive cruise

control [3].

Multiple-input multiple-output (MIMO) radar has been

widely utilized in automotive radar design since it can

synthesize a virtual array with large aperture size using

a small number of transmit and receive antennas [7]–[9].

The aperture size can be further enlarged for automotive

MIMO radar using sparse arrays [3], [10], [11]. Automotive

radar with sparse arrays not only brings down the hardware

cost but also reduces the mutual coupling among antennas

This work was supported in part by U.S. National Science Foundation
(NSF) under Grant CCF-2153386 and Alabama Transportation Institute (ATI).

[3]. The challenges associated with sparse arrays lie in

the high sidelobes which may introduce angular ambiguity

[12]. Interpolation techniques, such as linear regression [13],

transform matrix [14]–[20], matrix completion [10], [11], [21],

[22] or matrix reconstruction [23] approaches can be applied to

interpolate the missing elements in the sparse arrays. Under the

linear regression approach, usually a uniform linear subarray

is needed to estimate the prediction coefficients first. For

transform matrix approach, it usually works well for a narrow

field of view (FOV) and thus a sector-based transform is

required. Matrix completion approach provides flexibility in

designing the sparse array geometries such that the missing

elements can be filled by solving a low-rank matrix completion

problem [10]–[12], [21], [22]. However, its computational cost

is high due to the singular value decomposition (SVD) in each

iteration. Fast algorithm, such as singular value thresholding

(SVT) [24] has been developed. However, the structure of the

Hankel matrix was not exploited in SVT.

It should be noted the difference coarray based sparse

arrays, such as minimum redundancy array [25], nested array

[26], coprime array [27], are popular in literature and they can

resolve more number of targers than the number of physical

array elements. However, these methods require a large

number of array snapshots for accurate array covariance matrix

estimation. In the highly dynamic scenario of autonomous

driving, the number of array snapshots is often limited, and

typically only a single snapshot is available [3].

In this paper, sum coarray i.e., MIMO radar, is considered

for automotive radar, and only single-snapshot is avialble

for direction-of-arrival (DOA) estimation. We propose a fast

forward-backward (FB) Hankel matrix completion algorithm

for array interpolation by exploiting the Hankel matrix

structure. With the completed full array, angle finding is

carried with matrix pencil approach [28], [29]. Our proposal

achieves super-resolution in angle finding using only single

snapshot of sparse arrays. The FB Hankel matrix approach

has been proposed for super resolution spectrum estimation

in [30]. However, the sparse array or sparse sampling was

not considered there. We use only a small number of transmit

and receive antennas to synthesize a large virtual sparse array

via MIMO radar technology [3]. First, FB Hankel matrix
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completion based array interpolation not only smooths the

noise effect on target’s parameter estimation but also provides

degree of freedom to construct a low-rank matrix with larger

dimensions than the forward only (FO) case. As a result, more

targets can be completed and estimated with better accuracy

under FB. Second, the fast algorithm yields compact singular

vectors of the completed FB Hankel matrix, which can be

directly utilized in the matrix penci method. The proposal is

evaluated via numerical simulations.

The rest of the paper is organized as follows. In Section II,

we provide a review of the system model for forward-

backward Hankel matrix completion based sparse array

interpolation. Section III addresses the fast implementation of

FB Hankel matrix completion and angle finding, while Section

IV examines the numerical performance of the proposed

method. Finally, we conclude the paper in Section V.

II. SYSTEM MODEL

We consider a uniform linear array with M elements

and half wavelength element spacing. Assume there are K
targets with distinct angles {θk}, k = 1, · · · ,K in the same

range-Doppler bin. With the noiseless forward only array

response y = [y1, y2, · · · , yM ]
T

, a Hankel matrix H (y) with

dimensional of M1 × L can be constructed as

H (y) =








y1 y2 · · · yL
y2 y3 · · · yL+1
...

...
. . .

...

yM1
yM1+1 · · · yM







, (1)

where M1 = M −L+1. Here, L is the pencil parameter. The

Hankel matrix H (y) has a Vandermonde decomposition [10],

[31] structure

H (y) = AΣB
T , (2)

where A = [a (θ1) , · · · ,a (θK)], B = [b (θ1) , · · · ,b (θK)]
with

a (θk) =

[

1, ej2π
d sin(θk)

λ , · · · , ej2π
(M1−1)d sin(θk)

λ

]T

, (3)

b (θk) =

[

1, ej2π
d sin(θk)

λ , · · · , ej2π
(L−1)d sin(θk)

λ

]T

, (4)

and Σ = diag ([β1, · · · , βK ]). Thus, the rank of the Hankel

matrix H (y) is K, assuming M1 > K and L > K. It is

important to note that when selecting the pencil parameter L, it

should be chosen in such a way that the resulting matrix H (y)
is either a square matrix or an approximate square matrix. In

that case, L =
⌊
M+1

2

⌋
, and the FO data matrix has dimension

of
⌊
M+1

2

⌋
×
⌊
M+1

2

⌋
.

The noiseless conjugate backward array response can be

written as ȳ =
[
y∗M , y∗M−1, · · · , y∗1

]T
. Similarly, we can

construct a Hankel matrix H (ȳ) with dimensional of M1×L
using the backward array response. We can use the forward

and backward Hankel matrices H (y) and H (ȳ) to formulate a

block Hankel matrix YFB =
[
H (y) H (ȳ)

]
∈ C

M1×2L
.

In the forward-backward case, the pencil parameter L should

be adjusted such that the resulting matrix YFB is either

a square matrix or an approximate square matrix. In that

case, L =
⌊
M+1

3

⌋
, and the FB data matrix has dimension

of 2
⌊
M+1

3

⌋
× 2

⌊
M+1

3

⌋
. We have the following Proposition

regarding the rank of matrix YFB .

Proposition 1. The rank of the forward-backward block

Hankel matrix YFB = [H (y) |H (ȳ)] ∈ C
M1×2L

is K if

M1 > K and L > K/2.

Proof. See the proof in Appendix.

The FB data matrix has a larger dimension than the FO

data matrix while having the same rank. This results in

more degrees of freedom (DOFs) for matrix completion.

The additional DOFs in the FB data matrix offer several

advantages. Firstly, sparse arrays with the same aperture but

fewer antenna elements can be completed for the same number

of targets. Secondly, for sparse arrays with the same aperture

and the same number of antenna elements, a larger number of

targets can be completed.

We consider a one-dimensional sparse array synthesized

by MIMO radar technique [3]. By sparsely deploying Mt

transmit and Mr receive antenna elements along horizontal

direction on grid with grid size as half wavelength, we can

synthesize a sparse linear array with MtMr < M elements.

The sparse virtual array has the same aperture as the full

array. Let yS ∈ C
M×1

denote the array response of the

virtual sparse array, where the array response are filled with

zeros at the M − MtMr hole positions. Mathematically,

yS = y ⊙m, where ⊙ denotes the Hadamard multiplication

and m = [m1,m2, · · · ,mM ]
T

is a mask vector with mj = 1
if the j-th grid point is placed with a virtual array element or

mj = 0 if the j-th grid point is a hole. In practice, the array

response is corrupted by additive white Gaussian noise with

variance of σ2
, i.e.,

zS = yS + nS . (5)

Let Z
S
FB =

[
H (zS) H (z̄S)

]
∈ C

M1×2L
denote the

constructed block Hankel matrix, where z̄S = ȳS + n̄S is

the conjugate backward of the noisy sparse array response

zS . Here, ȳS = ȳ ⊙ m̄ and m̄ is a mask vector. To recover

the holes in the sparse array, we aim to complete the low-

rank forward-backward (FB) Hankel matrix. The noisy matrix

completion is formulated as a rank minimization problem,

defined below

min
x

rank
([

H (x) H (x̄)
])

s.t.
∥
∥
∥

[
H (x) H (x̄)

]
⊙MFB − Z

S
FB

∥
∥
∥
F
≤ δ. (6)

Here, MFB =
[
H (m) H (m̄)

]
∈ R

M1×2L
is a mask

matrix and δ =
√

m+
√
8mσ describes the noise bound with

m being the number of nonzero entries of MFB .

III. FAST FORWARD-BACKWARD HANKEL MATRIX

COMPLETION AND DOA ESTIMATION

We aim to develop an efficient iterative FB Hankel matrix

completion algorithm without explicitly carrying out the
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singular value decomposition (SVD) of the FB Hankel matrix

by exploiting its properties and structures. Based on the

completed full array, the DOA estimation is carried out using

the matrix pencil method.

A. Fast Forward-Backward Hankel Matrix Completion Using

Iterative Hard Thresholding

The FB Hankel matrix recovery problem can be solved

efficiently with iterative hard thresholding (IHT) method by

exploiting the advantages of the Hankel structure [32]. In the

n-th iteration, the new forward-backward array beamvectors

Xn =
[
xn x̄n

]
∈ C

M×2
is updated as

Xn = Xn−1 − αnDn−1, (7)

where αn = 1√
n

is the step size, and Dn−1 ∈ C
M×2

is the

sub-gradient, defined as

Dn−1 =
[
zS z̄S

]
−Xn−1 ⊙

[
m m̄

]
. (8)

In the n-th iteration, the obtained FB Hankel matrix Hn =
[
H (xn) H (x̄n)

]
= UnΣkV

H
n , with Un ∈ C

M1×K
and

Vn ∈ C
2L×K

, is first projected onto a tangent subspace Tn ∈
C

M1×2L
, which is defined as

Tn = {UnA
H +BV

H
n |A ∈ C

2L×K ,B ∈ C
M1×K}. (9)

The projection can be rewritten as [33]

PTn
Hn =

[
Un Q2

]
Mn

[
Vn Q1

]H
, (10)

where

Mn =

[

U
H
n HnVn R

H
1

R2 0

]

∈ C
2K×2K . (11)

Here, Q1 ∈ C
2L×K

and R1 ∈ C
K×K

are from QR

decompositions of the following matrix of dimensional 2L×
K, with computational cost of O

(

2LK2
)

.

(

I−VnV
H
n

)

H
H
n Un = Q1R1. (12)

Similarly, Q2 ∈ C
M1×K

and R2 ∈ C
K×K

are from QR

decompositions of the following matrix of dimensional M1 ×
K, with computational cost of O

(

M1K
2
)

.

(

I−UnU
H
n

)

HnVn = Q2R2. (13)

In the above equations (12) and (13), the multiplications

of H
H
n Un and HnVn can be computed efficiently via

fast Fourier transform (FFT) with computational cost of

O (KM logM) [34]. Let the reverse of the k-th column of the

matrix Vn be
←

vk = rev (vk) =
[
←

v1k,
←

v2k

]T

∈ C
2L×1

. The

multiplication of FB Hankel matrix with a vector is computed

efficiently via FFT [34]

f = ifft [fft (vec (Xn))⊙ fft (v̂k)] , (14)

where v̂k =
[
←

v1k,0,
←

v2k,0
]T

∈ C
2M×1

is a zero-padding

vector with 0 being a zero vector of length M − L. By

extracting the last M1 elements of f , we have

Hnvk = extract (f) . (15)

Then, FB Hankel matrix Hn is projected on to the set of rank

K matrices.

Hn+1 = DKPTn

[
H (xn) H (x̄n)

]
(16)

where the hard thresholding operator DK computes the rank K
approximation via truncated SVD. The rank K truncated SVD

of Mn ∈ C
2K×2K

can be represented as Mn = UMΣMV
H
M

which can be computed in O
(

K3
)

flops. Then the SVD of

Hn+1 can be written as

Hn+1 =






[
Un Q2

]
UM

︸ ︷︷ ︸

Un+1




 ΣM

︸︷︷︸

Σn+1






[
Vn Q1

]
VM

︸ ︷︷ ︸

Vn+1






H

Finally, update the estimate of Xn+1 =
[
xn+1 x̄n+1

]
as

xn+1 =

K∑

k=1

[Σn+1]k,kH
+

(

[Un+1]:,k

(

[Vn+1]1:L,k

)H
)

(17)

x̄n+1 =
K∑

k=1

[Σn+1]k,kH
+

(

[Un+1]:,k

(

[Vn+1]L+1:2L,k

)H
)

(18)

where H+
denotes the left inverse of H, i.e.,
[

H+

(

[Un+1]:,k

(

[Vn+1]1:L,k

)H
)]

t

=

1

ρt

∑

a+b=t

[Un+1]a,k [Vn+1]
∗
b,k

,

[

H+

(

[Un+1]:,k

(

[Vn+1]L+1:2L,k

)H
)]

t

=

1

ρt

∑

a+b=t

[Un+1]a,k [Vn+1]
∗
L+b,k

,

where ρt denotes the number of entries on the t-th anti-

diagonal of H (xn+1) or H (x̄n+1). It can be computed

efficiently via fast convolution with computational cost of

O (KM logM).
The initialization of the fast sparse array interpolation

algorithm is carried out via the Lanczos algorithm to obtain the

U0 and V0 in O
(

M2
)

[34]. Again the multiplication of the

block Hankel matrix with a vector involved in the Lanczos

algorithm can be computed efficiently via FFT with cost

of O (KM logM). The computational cost in each iteration

is O
(

K2M +KM logM +K3
)

. The storage complexity

of the fast algorithm is O (KM) since only the forward-

backward beamvectors and corresponding SVD components

need to be stored, while there is no need to express the block

Hankel matrix explicitly.
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The fast block Hankel matrix completion algorithm is

summarized in Algorithm 1.

Algorithm 1 Sparse Array Interpolation via Fast Block Hankel

Matrix Completion

Input:
[
zS z̄S

]
: sparse forward-backward beamvectors

corrupted with noise; K : model order; ϵ : precision level.

1: initialization: Find U0 and V0 of Z
S
FB via the Lanczos

algorithm; obtain x0 and x̄0 via (17) and (18); set n = 1

2: while

∥

∥

∥

[

zS z̄S
]

−
[

xn x̄n

]

⊙
[

m m̄
]∥

∥

∥

F
∥

∥

∥

[

zS z̄S
]∥

∥

∥

F

≥ ϵ do

3: Calculate sub-gradient Dn =
[
zS z̄S

]
− Xn ⊙

[
m m̄

]

4: Update Xn+1 = Xn−αnDn with step size αn = 1√
n

5: Calculate truncated SVD of Hn+1 by updating

Un+1 =
[
Un Q2

]
UM

Vn+1 =
[
Vn Q1

]
VM

Σn+1 = ΣM

6: Obtain Xn+1 =
[
xn+1 x̄n+1

]
via (17) and (18)

7: n = n+ 1
8: end while

Output :
[
xn+1 x̄n+1

]
and Un+1

B. DOA Estimation via Forward-Backward Matrix Pencil

Method

The DOA estimation is carried out using the forward-

backward matrix pencil method (FBMPM) [29]. Let Y0FB

and Y1FB be the matrices by deleting the last and first row

of the block Hankel matrix YFB , respectively. It holds that

YFB =

[
Y0FB

rM1

]

=

[
r1

Y1FB

]

, (19)

where r1 and rM1
represent the first and last row of matrix

YFB , respectively. It holds that

Y0FB =UfΣV
H , (20)

Y1FB =UlΣV
H , (21)

where Uf and Ul are obtained by deleting the last and

first row of matrix U that is obtained from Algorithm 1,

respectively.

Considering the matrix pencil Y1FB − ξY0FB and right

multiplying it with Y
+
0FB , the eigenproblem is

q
H
(

Y1FBY
+
0FB − ξI

)

= 0
H , (22)

where Y
+
0FB is the Moore-Penrose pseudo inverse of Y0FB .

The problem is equivalent to the general eigenproblem of

dimension K ×K

q
H
(

U
H
l Uf − ξUH

f Uf

)

= 0
H . (23)

Let the K eigenvalues are expressed as ξk = Re {ξk} +
jIm {ξk} , k = 1, · · · ,K. These eigenvalues are related to the

spatial frequencies that are determined by the targets’ angles

θk, i.e., ξk = ej2π
d sin(θk)

λ . And the targets’ angles can be

obtained as

θk = arcsin

(
λ

2πd
arctan

(
Im {ξk}
Re {ξk}

))

. (24)

In the matrix completion based FBMPM, the obtained matrix

U from Algorithm 1 containing the K left singular vectors is

used to solve the K × K dimensional general eigenproblem

of (23). As a result, the singular value decomposition step can

be avoided in the FBMPM.

IV. NUMERICAL RESULTS

Consider two automotive radar transceivers [10] with Mt =
6 transmit and Mr = 8 receive antennas, which are deployed

along the horizontal directions (see Fig. 1). The synthesized

sparse virtual array has aperture of 76λ and the angular

resolution is ∆θ = 0.67◦.

0 150
0

0.5

1

1.5

2
Physical Array

TX

RX

0 15050 100 
Horizontal [Half Wavelength]

0

0.5

1

1.5

2

50 100 
Horizontal [Half Wavelength] 

Virtual Array

Fig. 1: Example of an automotive radar with virtual sparse

array of 48 elements and aperture of 76λ.
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r
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Fig. 2: Performance comparison between FO and FB:

beamvector recovery errors decrease as SNR increases.

The performance comparison between forward only (FO)

Hankel matrix completion and FB Hankel matrix completion
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is conducted. For the forward only case, the pencil parameter

is chosen as L = 76 and the dimension of FO Hankel matrix

is 76 × 76. For the FB case, the pencil parameter is chosen

as L = 51 and the dimension of FB Hankel matrix is 102 ×
102. Assume the recovered array response is denoted by x̂,

corresponding to recovered backward backward array response

as ˆ̄x. The beamvector recovery error of FO and FB Hankel

matrix are respectively defined as εFO = ∥y−x̂∥
∥y∥ and εFB =

∥

∥

∥

[

y ȳ
]

−
[

x̂ ˆ̄x
]∥

∥

∥

F
∥

∥

∥

[

y ȳ
]∥

∥

∥

F

. We carried out independent runs in

the Monte Carlo simulation. In the simulation, input signal-

to-noise ratio (SNR) of zS is set as 0, 5, 10, 15, 20, 25, 30dB,

respectively. For each SNR setting, the number of independent

runs is set as T = 1, 000. The noise is generated independently

in each run, while the targets’ angles at directions θ1 = 10◦

and θ2 = 20◦ and reflection coefficients are kept the same. It

can be seen from Fig. 2 that both beamvector recovery errors

decrease as the SNR increases, and the block Hankel matrix

constructed with FB array response has a much lower recovery

error than the FO scenario.

2 3 4 5 6 7 8 9

K

10
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10
0

B
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a
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v
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c
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R

e
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o

v
e
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rr
o
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FO-Random

FB-Random

FO-Uniform

FB-Uniform

Fig. 3: Performance comparison between FO and FB:

beamvector recovery errors increase as K increases.

We then test the beamvector recovery error as the number

of targets increases when SNR = 20dB via Monte Carlo

simulation for T = 1, 000 independent runs. In each run, the

targets are either uniformly or randomly chosen with minimum

distance of ∆θ in the field of view of
[
−60◦, 60◦

]
. The

estimation is counted as a success if

∣
∣
∣θ̂k − θk

∣
∣
∣ < ∆θ/2 for all

the K targets. It can be seen from Fig. 3 and Fig. 4 that under

both uniform and random of target distribution, the beamvector

recovery error and estimation successful rate under FB have

better performance than FO.

The dimension of the FB Hankel matrix is larger than the

FO case, and thus more number of targets could be recovered

successfully. To illustrate this advantage, we consider 5 targets

with random angles. SNR is kept the same as 20dB. In Fig.

5, we plot the beampattern of recovered full array under both

FO and FB approaches. It can be found that the peaks under

FB are corresponding to ground truth obtained by full array,
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Fig. 4: Performance comparison between FO and FB:

estimation successful rate decreases as K increases.
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Fig. 5: Array beampatterns of 5 randomly generated target

direction.

while there is false peak under FO approach.

V. CONCLUSIONS

We have demonstrated an automotive radar sparse array

design approach using fast forward-backward Hankel matrix

completion algorithm. By exploiting the structure in the

Hankel matrix, it has been shown that it’s not necessary

to express the FB Hankel matrix explicitly during the SVD

calculation, which saves both computation cost and storage

space. Numerical simulations show the proposal has superior

performance.

APPENDIX

The noiseless conjugate backward array response can be

written as ȳ =
[
y∗M , y∗M−1, · · · , y∗1

]T
. Similarly, we can

construct a Hankel matrix H (ȳ) with dimensional of M1×L
using the backward array response following equation (1). We

show that the backward Hankel matrix H (ȳ) can be written

as

H (ȳ) = JM1
A

∗
Σ

∗
B

H
JL, (25)
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where JM1
and JL are exchange matrices, defined as

JM1
=





0 1
. .

.

1 0





M1×M1

,JL =





0 1
. .

.

1 0





L×L

.

It holds that JM1
A

∗ = AΦ
−(M1−1)

and JLB
∗ = BΦ

−(L−1)
,

where

Φ = diag

([

ej2π
d sin(θ1)

λ , · · · , ej2π
d sin(θK)

λ

])

. (26)

The backward Hankel matrix H (ȳ) can be further written as

H (ȳ) =JM1
A

∗
Σ

∗(
JLB

∗)T

=AΦ
−(M1−1)

Σ
∗
(

BΦ
−(L−1)

)T

=AΦ
−(M1−1)

Σ
∗
Φ

−(L−1)
B

T

=AΦ
−(M1+L−2)

Σ
∗
B

T . (27)

In other words, the backward Hankel matrix H (ȳ) still enjoys

a Vandermonde decomposition structure and its rank is K.

We can use the forward and backward Hankel matrices

H (y) and H (ȳ) to formulate an enhanced Hankel matrix

YFB = [H (y) |H (ȳ)] ∈ C
M1×2L

, which can be written as

YFB = [H (y) |H (ȳ)]

=
[

AΣB
T |AΦ

−(M1+L−2)
Σ

∗
B

T
]

= [A|A]

[
Σ

Φ
−(M1+L−2)

Σ
∗

] [
B

B

]T

.

It holds that rank ([A|A]) = K. Therefore, the rank of the

enhanced Hankel matrix YFB is still K.
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