
Deep Learning Based Computationally Efficient
Unrolling IAA for Direction-of-Arrival Estimation

Ruxin Zheng†, Hongshan Liu†, Shunqiao Sun† and Jian Li‡

†Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL, USA
‡Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA

Abstract—We introduce a computationally efficient approach
for direction-of-arrival (DOA) estimation in automotive radar
systems using a single-snapshot. Classical subspace-based meth-
ods like MUSIC and ESPRIT may apply spatial smoothing on
uniform linear array to create multiple snapshots for accurate
DOA estimation. However, spatial smoothing has the drawback
of reducing the array aperture and it is not feasible for sparse
linear arrays. The existing single-snapshot-based methods like
compressive sensing and iterative adaptation approach (IAA)
have high computational costs and slow convergence times, which
poses challenges for real-time implementations. While strides
in optimization algorithms and hardware acceleration strategies
propose plausible remedies to alleviate these constraints, enhanc-
ing their appropriateness for real-time use, the computational
cost remains notably high. The recent deep learning-based DOA
estimation methods have shown good performance in terms of
inference time and estimation accuracy, but lack interpretability
and generalization. To address these limitations, we propose an
unrolling iterative adaptive approach (UAA) that unrolls the
IAA algorithm into multiple deep neural network layers. The
UAA network has better generalization and avoids the high
computational costs associated with matrix inversions. Extensive
numerical experiments show that the UAA network outperforms
IAA in terms of inference time and estimation accuracy under
different signal-to-noise ratio (SNR) scenarios.

Index Terms—Automotive Radar, DOA estimation, Iterative
Adaptive Approach, Algorithm Unrolling, Array Signal Process-
ing, Deep Learning

I. INTRODUCTION

Automotive multiple-input multiple-output (MIMO) radars
are an essential part of advanced driver assistance systems and
self-driving cars, mainly because they are low cost, capable
of sensing in bad weather, and unaffected by poor visibil-
ity conditions [1]–[6]. Frequency-modulated continuous-wave
(FMCW) is commonly used in automotive radar systems with
low-cost analog-to-digital converters (ADCs). The targets are
separated in range-Doppler domains using two-dimensional
fast Fourier transform (FFT), and a constant false alarm rate
(CFAR) detector is used to select a subset of range-Doppler
bins for direction-of-arrival (DOA) estimation through a third
FFT. As a result, current automotive radar only provides sparse
point clouds. To improve the angular resolution and generate
high-resolution radar images, automotive radar can perform
high-resolution DOA estimation for each range-Doppler bin
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to produce range-azimuth spectra imaging in bird’s-eye view
format [7]–[10].

The DOA estimation problem has been extensively stud-
ied in the literature. The parametric subspace-based high-
resolution approaches, such as multiple signal classification
(MUSIC) [11] and the estimation of signal parameters via
rotational invariance techniques (ESPRIT) [12], [13], require
multiple snapshots to obtain an accurate estimation of the array
covariance matrix. However, in a highly dynamic automotive
environment, it is challenging to have multiple snapshots, and
usually only a single-snapshot in available [4]. The single-
snapshot MUSIC algorithm was introduced in [14]. It cal-
culates the MUSIC pseudo spectrum using a Hankel matrix
constructed from a single-snapshot array response. However,
subspace-based approaches suffer from high computational
cost, due to singular value decomposition and angle scanning.

Compressive sensing (CS) [15] based sparse sensing tech-
niques have been shown to have super-resolution performance
[16] and work well for automotive radar DOA estimation with
single-snapshot by exploiting the sparse nature of targets in the
angular domain. For CS-based DOA estimation algorithms, it
is required that a dictionary satisfies the restricted isometry
property (RIP) condition [17], which requires an optimal
design of antenna arrays such that the peak sidelobe level is
low [4]. Another well-known DOA estimation algorithm that
works for single-snapshot is the iterative adaptive approach
(IAA) [18], [19] which is an iterative and nonparametric
method. IAA has been shown to be robust in DOA estimation
compared with CS approach. However, the main challenge of
implementation CS and IAA is their high computational costs.

Recently, data-driven deep learning (DL) for DOA estima-
tion has received increasing attention [20]–[22]. In general,
DL-based methods have several important advantages over
traditional methods, such as fast inference time, enhanced
super-resolution capabilities, and performing well at low SNR
[20]. Deep learning techniques are mostly data-driven and
lack interpretability, while traditional iterative algorithms are
more interpretable because they model the physical processes
with domain knowledge. Consequently, a technique called
algorithm unrolling has recently been proposed and is gaining
popularity due to its ability to provide a concrete and sys-
tematic link between traditional iterative algorithms and deep
neural networks [23]. One of such unrolling network example
for sparse signal recovery is the learned iterative shrinkage
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thresholding algorithm (ISTA) [24].
In this paper, we present a novel unrolling iterative adaptive

approach network (UAA) for single-snapshot DOA estimation.
The proposed approach is designed to provide better inter-
pretability compared to conventional deep neural networks by
mimicking IAA in an unrolled manner. Through extensive nu-
merical experiments under various signal-to-noise ratio (SNR)
scenarios, we demonstrate that UAA outperforms IAA in terms
of inference time and DOA estimation accuracy. Additionally,
UAA outperforms data-driven DL approaches in terms of its
ability to generalize and estimate DOAs that have not been
seen before. These results highlight the potential of the UAA
as a promising solution to DOA estimation problems with
superiority over existing methods in terms of performance and
interpretability.

II. SYSTEM MODEL

Consider a general linear antenna array of N elements and
there are K far-field point targets with angles θk for k =
1, · · · ,K. The array response can be written as

y = A(θ)s+ n, (1)

where n represents a complex N × 1 white Gaussian noise
vector, and A(θ) = [a(θ1),a(θ2), · · · ,a(θK)] is the N × K
array manifold matrix, where

a(θ) =
[
1, e

2πd2
λ sin θ, · · · , e

2πdN
λ sin θ

]T
. (2)

Here, dn is the element spacing between the n-th element
and the first element, and s = [s1, s2, · · · , sK ]T is the source
vector. In this paper, we are interested in estimating the
parameter θ, i.e., the target DOAs, using a single-snapshot
of the array response y.

IAA is a data-dependent, nonparametric algorithm [18]. The
DOA space is discretized into a grid of L points, and the array
manifold is defined as A(θ) = [a(θ1), · · · ,a(θL)]. The covari-
ance matrix of y can be represented by R = A(θ)PAH(θ),
where P is a L × L diagonal matrix with the l-th diagonal
element being Pl = |ŝl|2. Here, ŝl is the estimate of the source
reflection coefficient corresponding to direction θl.

IAA iteratively estimates the reflection coefficient ŝ and
updates the covariance matrix by minimizing the weighted
least-square (WLS) cost function ∥y−sla(θl)∥2Q−1(θl)

, where

∥X∥2Q−1(θl)

∆
= XHQ−1(θl)X and the interference and noise

covariance matrix Q(θl) = R− Pla(θl)a
H(θl). The solution

to this optimization problem is

ŝl =
aH(θl)R

−1y

aH(θl)R−1a(θl)
. (3)

The computational cost of each IAA iteration is 2LM2 +
LM + M3, where M is the number of array snapshots and
L is the number of discretized grids. Fast IAA algorithms
[25]–[27] have been proposed, exploiting the FFT operation
and Gohberg-Semencul (GS) representation of the inverse
of R. The computational cost of each fast IAA iteration is

M2 +12ζ (2M) + 3ζ (L), where ζ (L) stands for the compu-
tational cost of performing FFT of size L, i.e., O (L logL)
[26]. The superfast IAA uses a conjugate gradient (CG)
algorithm to approximate the inverse of R to further reduce
the computational cost. Still, the high computational cost of
IAA and the fast IAA algorithms is a bottleneck that prevents
their real-time implementation in automotive radar systems.

III. AN UNROLLING ITERATIVE ADAPTIVE APPROACH
NETWORK FOR DOA ESTIMATION

In this section, we introduce the unrolling iterative adaptive
approach (UAA) network, a novel approach that combines
the classical IAA with unrolled deep networks. The UAA
generates a pseudo-spectrum, containing estimated reflection
coefficients, by scanning a grid. This enables us to formulate
the DOA estimation as a spectrum estimation problem, rather
than a multi-label classification task.

A. The UAA Architecture

We provide a comprehensive overview of the UAA architec-
ture, highlighting its key components and innovative features.
The choice of using a recurrent neural network (RNN), specif-
ically a gated recurrent unit (GRU) [28], is motivated by its
ability to efficiently process sequential data, which makes it an
ideal choice for array signal processing. The core idea behind
UAA is to take the iterative process of IAA and truncate it into
discrete steps, which are then mapped to GRU blocks. Each
GRU block is composed of two GRUs, GRU-T and GRU-B,
which respectively emulates the numerator and denominator of
the fraction, AH(θ)R−1y

diag(AH(θ)R−1A(θ))
, in IAA. The outputs of the

GRUs are passed through ReLU and dense layers, which are
then concatenated and fed into a final dense layer that performs
the division operation to generate the spectrum estimation, ŝ.
This estimation is then used to update the covariance matrix,
R, for the next GRU block.

Turning the iterative solver into a deep neural network
with multiple layers results in faster inference compared to
traditional model-based optimization. The end-to-end learning
of iteration-specific parameters in deep unrolling networks
allows for fewer layers to be used to achieve comparable
performance [29]. In our implementation, four GRU blocks
are employed. The UAA architecture is shown in Fig. 1.

B. Data Generation and Labeling

We use a uniform linear array (ULA) consisting of N =
20 elements with inter-element spacing of half-wavelength to
generate the simulated beam vectors for maximal 3 targets
with DOAs of {θk} and a minimum separation of ∆ϕ = 6◦.
The radar field of view (FOV) is set as ϕFOV = [−30◦, 30◦],
which is discretized with a step size of 1◦, resulting in a grid
g = [g1, · · · , gM ]

T ∈ RM×1 with M = 61 possible DOA
angles. The reflection coefficients sk for each DOA source
are randomly generated complex numbers. The label of the
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Fig. 1. The illustration of the IAA algorithm (top), and the architecture of UAA (bottom).

beam vector is denoted by ĝ = [ĝ1, · · · , ĝM ]
T ∈ RM×1, and

it can be expressed as

ĝm =

{
|sk|, if θk = gm

0, else
(4)

To create the beam vectors, we use a combination of
various angles and random reflection coefficients and repeat
the process three times. We also add varying levels of noise
by sampling the signal-to-noise ratio (SNR) uniformly from a
range of 0 dB to 30 dB with increments of 5 dB. The resulting
training set consists of 470, 946 beam vectors.

C. Training Approach

The proposed UAA model was trained for 200 epochs
with a batch size of 256, using the Adam optimizer with
a learning rate of 0.001 and a mean squared error (MSE)
loss function. The model was trained end-to-end without any
additional pre-processing or post-processing steps. The goal
of this training was to minimize the MSE loss and achieve
accurate predictions. The experiment was carried out in Python
3.8 using PyTorch 1.10 and CUDA 11.1 on four Nvidia RTX
A6000 GPUs. To prevent overfitting, a separate validation
set was generated in the same way as the training set, but
with different random reflection coefficients. The training and
validation loss were carefully monitored and are plotted in Fig.
2. The weight with the lowest validation loss was selected for
all performance evaluation tasks in Section IV.

IV. PERFORMANCE EVALUATION

We evaluate the UAA model in four crucial aspects of
DOA estimation: accuracy, separability, generalizability, and
complexity. To provide a comprehensive comparison, the per-
formance of the UAA model is benchmarked against tradi-
tional DOA estimation methods, including IAA and digital
beamforming (DBF) implemented via FFT, as well as a
convolutional neural network (CNN) that has been specifically
trained for DOA estimation as a multi-label classification
problem on a discrete grid [20]. The CNN proposed in [20]
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Fig. 2. The training and validation loss of UAA.

consisted of four two-dimensional (2D) convolution layers
and four dense layers. It was originally designed for Ns

snapshot, with Ns ∈ [100, 10000], but it has been adjusted
for single-snapshot scenarios in this evaluation. According to
[30], IAA exhibits superior performance compared to other
prominent sparse signal representation techniques like Sparse
Bayesian Learning (SBL). As a result, we have chosen to
exclusively employ IAA as our benchmark algorithm for the
purpose of our research. The maximum number of iterations
for IAA is set to 15, as the performance improvement becomes
negligible after around 15 iterations [18]. In addition, under
IAA, the FOV [−30◦, 30◦] has been discretized into the same
61 points as the UAA model for angle scanning. For DBF, the
FFT length is set to NDBF = 2, 048 to ensure the accuracy
of the frequency-domain representation. All experiments are
conducted using 5, 000 Monte Carlo trials.

The comparison will provide insights into the strengths and
weaknesses of the UAA model in comparison to these widely-
used methods, and demonstrate the unique capabilities of the
UAA model in single-snapshot DOA estimation.
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A. Accuracy

We have selected the root mean squared error (RMSE) as
our performance metric to evaluate the accuracy of DOA es-
timation methods. Our methodology follows the conventional
grid-based DOA estimation approach, where a peak search
is performed to extract the DOA estimates from the UAA
estimated spectrum. For each Monte Carlo trial, an off-grid
source with a direction randomly drawn from the interval
[−30◦, 30◦] is generated, along with its corresponding SNR.
As demonstrated in Figure 3, the RMSE vs SNR chart shows
that the UAA algorithm outperforms CNN across all SNR sce-
narios, providing comparable high DOA estimation accuracy
to IAA for higher SNR (greater than 5dB) and even greater
accuracy for lower SNR. The dark dashed line in the chart
represents the grid-induced error, which is calculated as the
RMSE between the source DOA and its closest angle on the
grid. This error serves as a lower bound for this performance
metric. It is important to highlight, with fairness in mind, that
the DBF method utilized in this particular subsection follows
the same grid implementation as the IAA. Moreover, the SNR
is defined as the ratio between the power of the signal and the
power of the accompanying noise.
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Fig. 3. The logarithmic scale RMSE versus SNR in the DOA estimation of
a single, randomly generated off-grid target.

B. Separability

To evaluate the DOA estimation performance in resolving
closely located targets, we design an experiment with two
targets situated at −∆θ/2 and ∆θ/2, respectively. The ∆θ
represents the angular distance between the targets. The trial
is considered a “hit” if the difference between the estimated
DOAs and ground truth falls within ±1◦. The hit rate is
calculated as the fraction of successful “hit” trials out of 5, 000
Monte Carlo trials under SNR of 40 dB.

As illustrated in Fig. 4, the IAA demonstrates the ability
to resolve targets with an angular separation of 2◦. A com-
parison between the CNN and UAA reveals that the former
slightly outperforms the latter when the target separation is
less than 4◦. However, it’s important to note that both CNN
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Fig. 4. Performance evaluation of UAA, CNN, DBF, and IAA algorithms:
hit rate vs ∆θ.

and UAA were trained on data that only contained targets
with a minimum angular separation of 6◦. As a result, their
resolution capabilities are limited by the quality of the training
data. The 3-dB beamwidth of the tested array’s beampattern
is around 5.1◦. Therefore, the hit rate of the DBF method
increases significantly when the separation between two targets
surpasses 6◦.

C. Generalizability

To further assess the generalizability of both the CNN and
the UAA methods, an experiment was conducted using four
off-grid targets located at [−25.2◦,−10.6◦, 5.3◦, 15.1◦]. The
test data is generated with varying SNRs and random reflection
coefficients, to serve as unseen data.
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Fig. 5. Performance evaluation of UAA, CNN, DBF, and IAA algorithms:
hit rate vs SNR.

The results of the generalizability experiment are depicted
in Fig. 5, where the performance of various DOA methods
were compared. The hit rate analysis suggests that UAA
outperforms all other DOA methods across all SNR levels.
This superiority is particularly evident when comparing UAA
to the CNN method, as the hit rate of UAA is consistently
higher. The superior performance of UAA across different
SNRs and target locations highlights its potential for wider
applications and real-world use.
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D. Complexity

We thoroughly evaluated the complexity of the UAA
method by analyzing its inference time and trainable parame-
ters. To ensure fairness, all DOA methods were performed in
Python 3.8 using PyTorch 1.10 and CUDA 11.1 on a single
Nvidia RTX A6000 GPU, and the inference time was mea-
sured by averaging over 5, 000 trials. For the deep learning-
based methods, a batch size of 1 was used. The results, shown
in Table I, reveal that the DBF method has the fastest inference
time. The UAA method was found to be 9 times faster than
the IAA method. It’s worth noting that the CNN method has a
higher number of trainable parameters compared to the UAA
method, due to the use of 2D convolution layers, as its input
is a 2D covariance matrix. However, the CNN method has a
lower inference time than the UAA method, which may be
attributed to its fewer layers.

Methods Inference Time (ms) # Trainable Parameters
DBF 0.12 –
IAA 49.9 –
CNN 1.0 49, 216, 317
UAA 5.7 127, 4096

TABLE I
INFERENCE TIME COMPARISON OF DOA METHODS

V. CONCLUSIONS

By leveraging the strengths of both classical IAA methods
and recent deep learning-based DOA estimation techniques,
the UAA network unrolls the IAA algorithm into multiple
deep neural network layers. The proposed UAA method pro-
vides an innovative solution for high-resolution angle finding
in automotive radars with fast inference time by avoiding
the high computational cost of large matrix inversion and
better generalization capability than purely data-driven deep
learning approaches. The numerical experiments conducted in
this paper demonstrate that the UAA network outperforms
the IAA method in terms of inference time and estimation
accuracy under varying SNR conditions. This new approach
offers a promising solution for real-time DOA estimation in
automotive radars.
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