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Abstract—In many applications, such as automotive radar
for autonomous vehicles, a sparse linear array (SLA) is more
attractive than a uniform linear array (ULA). SLAs not only
make hardware costs lower to design antenna arrays with a large
aperture but also reduce the mutual coupling among antenna
elements. When estimation of signal parameters via rational
invariance techniques (ESPRIT) is applied on SLAs with shift
among subarrays being larger than half wavelength, there would
be ambiguities in the field of view (FoV) of the sensor array due
to angle folding. In this paper, we present novel SLA geometry
with non-uniform subarrays that do not necessarily have a
centrally symmetric geometry, and corresponding coprime FoV
aided approach to do the angle unfolding. The main goal of
the sparse array design is to increase the array aperture size
using fewer sensors while maintaining shift invariant geometry.
By carefully designing the shifts among these sparse subarrays
following a coprime relationship, the angles can be resolved
uniquely by a consistent comparison of the angle estimations
reported separately by different shifted subarrays.

Index Terms—Coprime visible regions, angle estimation, sparse
array, ESPRIT, unfolding

I. INTRODUCTION

The direction of arrival (DoA) estimation of multiple targets

using a set of sensors has been widely discussed in the

literature. For a standard uniform linear array (ULA) with

element spacing of half wavelength, digital beamforming

(DBF) [1] techniques can find angles of the targets without

ambiguity by applying the fast Fourier Transform (FFT) to

snapshots across all the sensors. Although DBF can efficiently

be implemented even with a single snapshot in embedded

digital signal processing systems, for a given array aperture

size, the resolution of DBF is limited by FFT. Subspace-

based super-resolution algorithms have been developed. For

example, multiple signal classification (MUSIC) exploits the

orthogonality between signal space and noise space to obtain

the pseudo-spectrum [2]. Usually, fine discrete fine grids are

required in MUSIC, which results in high computational cost.

The root-MUSIC [3] is the variation of MUSIC which solves

a polynomial rooting problem and avoids grid search. Multiple

snapshots are required of classical MUSIC to estimate signal

and noise spaces accurately. A single snapshot MUSIC was

proposed in [4], which exploited the noise subspace of a

Hankel matrix constructed via spatial smoothing of the sin-

gle array snapshot. Another classical and popular subspace-

based angle estimation algorithm for ULA is ESPRIT [5],

This work was supported in part by U.S. National Science Foundation
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which exploits the phase shifting information among identi-

cal subarrays. ESPRIT avoids grid search and thus is more

computationally efficient than MUSIC. To further reduce the

ESPRIT computation complexity for a larger array, beamspace

ESPRIT was proposed in [6] to resolve angle in parallel with

high resolution and accuracy by reducing the dimension of the

covariance matrix with sophisticated transformation matrices,

e.g., Discrete Fourier transform (DFT) transformation matrix.

Different from the rank-revealing factorizations of complex-

valued matrices in the original ESPRIT, unitary ESPRIT [7]

utilizes unitary transformation to form real-valued matrices to

reduce computational burden.

In many applications, such as automotive radar for au-

tonomous vehicles [8]–[11], a sparse linear array (SLA) is

more attractive than a ULA. Sparse linear arrays not only make

hardware costs lower to design antenna arrays with a large

aperture but also reduce the mutual coupling among antenna

elements. For ULA with half-wavelength interelement spacing,

the aperture is proportional to the number of array sensors.

Thus, a high number of antennas is requied for high-resolution

DoA estimation, which are often infeasible in automotive

radar applications due to the strict cost constraints. Multiple-

input multi-output (MIMO) radar [12] has been introduced

to design automotive radar to achieve a large virtual aperture

at a low cost [8]. However, the cost of synthesizing a large

virtual ULA with half-wavelength interelement spacing using

MIMO radar technology remains high. To further reduce the

cost without sacrificing the high angular resolution is via the

use of nonuniform, or sparse linear arrays (SLAs) [13], [14].

For a certain aperture size, a SLA has much fewer elements

than a ULA. However, performing DBF along an SLA results

in high sidelobes and even grating lobes which would make

angle finding fail. To suppress unwanted spurious peaks in

the beampattern, it is common to interpolate the missing

elements of SLA. Transformation matrix is proposed in [15]

to interpolate the SLA. Matrix completion methodology was

studied in [16], [17] to fill the holes in the SLA, and in [18]–

[20] the coprime and nested structures were investigated to

obtain an enhanced ULA. After interpolation, DBF can be

utilized in the interpolated array for angle finding. Unlike

the interpolation methods, compressive sensing (CS) [21] and

the iterative adaptive approach (IAA) [22] can be directly

implemented for angle finding with SLAs. However, they have

high computational costs and the number of angles that can

be resolved should be sparse for CS. Artificial intelligence
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techniques can also be applied for DoA estimation with SLAs

[23]. But DoA estimation using deep neural networks suffers

from generalization issue. It is also possible to apply subspace

methods, e.g., MUSIC and ESPRIT, for sparse linear arrays,

if the array geometry matches the unambiguous requirement

[24]. Directly applying the ESPRIT method in the sparse

array is attractive due to the low computational complexity

compared with MUSIC. However, for ESPRIT, when the

shifting among subarrays is larger than half wavelength, there

will be angle aliasing in the field of view (FoV), which

introduces ambiguities, i.e., false estimations.

In this paper, we present a sparse array geometry design

and corresponding unfolding ESPRIT algorithm to resolve

ambiguous angles. The sparse array consists of three identical

sparse subarrays with different shift invariant structures that

are much larger than half wavelength to achieve a large an-

tenna array aperture. By carefully designing the shifts among

these sparse subarrays following a coprime relationship, the

DoA can be resolved uniquely by a consistent comparison of

the DoA estimation reported separately by the three coprime

FoVs.

Throughout this paper, matrices and vectors are represented

in upper and lower case bold, respectively. The conjugate

transpose is (·)H and the complex values set is C. The notation

“·” denotes the dot product, and the expectation operator is

E{·}.

II. SYSTEM MODEL

Consider K narrow band noncoherent signals impinging on

a ULA with N sensors deployed along the x axis with element

spacing d. The received signal at snapshot t is given by

y(t) =
K
∑

k=1

a(θk)sk(t) + n(t), (1)

where the sk denotes the radar cross section of the k-th target,

and the additive noise vector n(t) at the t-th snapshot is

independent from sources and is assumed to be zero-mean

white Gaussian noise with variance σ2. The array steering

vector has the form as

a(θk) =
[

1, e−j2πd/λsin(θk), · · · , e−j2π(N−1)d/λsin(θk)
]T

.

(2)

The output of a SLA with Ns elements (Ns < N) is part of

the ULA output, and its data can be defined by a mask vector

m = [u1, u2, · · · , uN ]T where the element ui represents the

state of the i-th sensor of the ULA. If ui = 1, the i-th element

exists in the SLA. If ui = 0, the i-th element is a hole in the

SLA.

To simplify formulation, we fix the two sensors at both

ends to maintain the same array aperture as the ULA and

select Ns−2 other sensors in-between, rendering a SLA with

total of Ns sensors. It holds that trace tr{mmT } = Ns. By

carefully designing the mask vector m, it is possible to form

d1 d2

Fig. 1. The illustration of a staggered array [26].

SLAs that contain identical subarrays. The t-th snapshot array

output of a SLA is given as

ys(t) = y(t)⊙m, (3)

where ⊙ denotes element-wise multiplication. The output

vector ys(t) also has a dimension C
N×1, which means that it

is not a compact form and the missing element has been filled

in with “0”.

We consider to utilize ESPRIT to carry out DoA estimation

for SLAs. The basic assumption of ESPRIT is that the two

subarrays overlap completely after shifting a subarray a certain

distance ∆ along the direction of sensor deployment. The

relationship between the DoA estimation error variance, shift

distance ∆, and the number of elements in a subarray, Ncs,

has been investigated in [25]. It is shown that with the value

of Ncs and ∆ increasing, the DoA estimation error decreases.

However, the visible region of ESPRIT is confined by the

following relation

−π ≤ 2π|∆|sin(θk) ≤ π. (4)

A visible region of [−π/2, π/2] renders the shift distance

∆ ≤ λ/2. Once the shift is larger than λ/2, there would be

grating lobes in the visible region, resulting in ambiguities

in DoA estimation. For ULA subarrays, a two-step procedure

was proposed in [25] to decrease DoA estimation error by

using larger ∆. This method first estimates the angle with a

small ∆ and then switches to a larger ∆ to further decrease the

estimation error. A SLA with paired staggered ULA subarrays

was proposed in [26] to do angle finding. An example of

staggered array is shown in Fig. 1, where the SLA consists

of two ULA subarrays with elements spacing d1 + d2 and the

two identical subarrays are shifted by d1. The staggered arrays

listed in Fig. 1 can be viewed as a uniform rectangular array

(URA) with two layers, by virtually treating the green subarray

as the top layer of the URA. By choosing values of d1 and

d2 as a coprime pair, two-dimensional unitary ESPRIT can be

used to find DoA without ambiguity. However, this approach

requires a SLA with centrally symmetric geometry so that the

unitary ESPRIT can be applied.

III. COPRIME FOV AIDED SPARSE ARRAY DESIGN

In this paper, we consider the visible region as [−π/2, π/2].
We present a coprime FoV method to do the angle unfolding

for SLAs with non-uniform subarrays which do not necessarily

have a centrally symmetric geometry. The main goal of the

sparse array design is to increase the array aperture size using

fewer sensors while maintaining shift invariant geometry. To

achieve the large antenna array aperture, a large ∆ is expected.
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A. ESPRIT On Sparse Linear Arrays

We propose a sparse array design that consists of three iden-

tical sparse subarrays. Let zero-filled sparse vectors ys1(t),
ys2(t) and ys3(t) denote the outputs of the three sparse

subarrays and they can be expressed as

ys1(t) =

K
∑

k=1

ã(θk)sk(t) + n1(t) = As(t) + n1(t)

ys2(t) =

K
∑

k=1

ã(θk)sk(t)e
jφk + n2(t) = AΦs(t) + n2(t),

ys3(t) =
K
∑

k=1

ã(θk)sk(t)e
jψk + n2(t) = AΨs(t) + n3(t),

(5)

where ã(θk) is a subset of a(θk)sk(t) ·m. The array manifold

is represented as A = [ã(θ1), ã(θ2), · · · , ã(θK)] ∈ C
Nms×K ,

where Nms denotes the number of element positions in

the subarray (including the hole positions). The phase shifts

among the three subarrays are denoted as ejφ and ejψ ,

respectively. The diagonal matrices Φ and Ψ contain the phase

shifts with respect to K targets, i.e.,

Φ = diag
([

ejφ1 , ejφ2 , · · · , ejφK

])

, (6)

Ψ = diag
([

ejψ1 , ejψ2 , · · · , ejψK

])

. (7)

Here, s(t) = [s1(t), s2(t), ..., sK(t)]T is the signal vector.

Since the multiplication of zero-filled rows in A with Φ or Ψ

are still zeros, the phase shifts at zero-filled positions are un-

necessary, as they do not provide any information. Therefore,

in the following of this paper, compact array measurement

vector obtained by removing the zeros corresponding to holes

in the subarrays, is used to save storage space. For example,

the stacked subarrays 1 and 2 measurement vector in the

compact form is given by

yc1(t) =

[

Ac

AcΦ

]

s(t) + n(t) = Ps(t) + n(t), (8)

where yc1(t) and Ac are all in the compact form. The

dimension of the ESPRIT steering matrix P is C
2Ncs×K ,

where Ncs is the number of elements in a subarray.

Assume that there are L snapshots available to estimate

DoA, i.e., Yc = [yc(1), · · · ,yc(L)]. The sampling covariance

matrix is expressed as

R̂c1 =
1

L

L
∑

t=1

yc1 (t)y
H
c1 (t). (9)

After performing eigenvalue decomposition on R̂c1, we have

the following structure

R̂c1 =

2Ncs
∑

i=1

λieie
H
i , (10)

Assume that the number of target K is less than the sensor

elements in the subarray, i.e., K < Ncs. The eigenvectors and

eigenvalues corresponding to K targets are arranged into a

signal-related matrix Es and a diagonal eigenvalue matrix Λ

in sorted order, respectively. The noise matrix is represented

as En ∈ C
2Ncs×(2Ncs−K) and its corresponding eigenvalue

matrix is Λn. Therefore, the eigenvalue decomposition of R̂c1

can be written as summation of signal and noise parts, i.e.,

R̂c1 = EsΛsE
H
s +EnΛnE

H
n , (11)

This partition indicates that the rank of signal space is equal

to the rank of the steering matrix, i.e., rank(Es) = rank(P).
Thus, there is a unique nonsingular matrix U such that

Es = PU, (12)

or equivalently
[

Es1

Es2

]

=

[

AcU

AcΦU

]

. (13)

Since Es1 ∈ C
Ncs×K and Es2 ∈ C

Ncs×K have the same

column space, and therefore the estimated phase shift matrix,

Φ̂, lies in the eigenvalues of the following matrix T ∈ C
K×K

obtained via a least square approach, shown below

T =
(

EHs2Es2

)−1
EHs2Es1. (14)

The k-th DoA estimation can be obtained as

θ̂k = asin(
φ̂k

2π|∆1|
). (15)

In a similar way, the sampling covariance matrices R̂c2 and

R̂c3, corresponding to stacking subrray 1 and subrray 3 with

shift of ∆2, stacking subrray 2 and subrray 3 with shift of

∆3, can be obtained, respectively. Then, the other two groups

of DoA estimations can be computed following the above

procedure.

(a)

(b)

(d)

1 4 5 7 8 12

1 15

15 16 19 22 30

4 5 19 3012 16

1 4 5 197 8 22

(c)
4 7 8 22 301512 16

Fig. 2. (a) The proposed coprime FoV sparse linear array; (b-d) Illustration
of three possible combinations of shifted subarrays. The green dots denote
the sharing elements by two subarrays.

B. Angle Unfolding With Coprime FoV

The equation (4) indicates that the arrival angle of targets

beyond the visible region will be folded into narrow FoV and

result in false detections for a large ∆. To solve this issue,

other subarrays are required to form different folded angle

sets. Fig. 2 illustrates an example of coprime FoV sparse

array, where the coprime FoV array consists of three shift

invariant subarrays, located on gird with indices of [1, 4, 5, 19],
[12, 15, 16, 30], and [4, 7, 8, 22]. Here, one grid size represents

half wavelength. Different shift invariant subarrays combina-

tions with different shifts are shown in Fig. 2 (b)-(d), where
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green dots represent the duplicated sensors that are shared

by two subarrays. The shifts among all the two groups of

subarrays are ∆1 = 5.5λ (see Fig. 2 (b)), ∆2 = 4λ (see Fig.

2 (c)), and ∆3 = 1.5λ (see Fig. 2 (d)). These shifts follow

a coprime relationship. Coprime yields different FoVs, as a

result of which the angles can be uniquely identified.

To obtain three different subarray sets while using fewer

sensors, some of the sensors should be shared by different

subarrays. The relationship between FoV and ∆ in (4) implies

that the shifts ∆i and ∆j should satisfy: 1) yield coprime

FoVs; 2) the difference of ∆i and ∆j is large enough,

especially when ∆i and ∆j are large numbers. For example,

if the shift ∆i and ∆j are 5λ and 5.5λ, the corresponding

FoVs are [−5.73◦, 5.73◦] and [−5.21◦, 5.21◦], respectively.

These small differences in FoV sets result in folded angles

that are close to each other and therefore it is not easy to tell

the correct DoAs from the ambiguities.

The number of targets K in the array output data needs

to be known, which can be estimated with many algorithms,

e.g., the Akaike information criterion (AIC) [27], minimum

description length (MDL) principle [28] and random matrix

theory method (RMT) [29]. The number of ambiguities of

one target is 2∆i, including the true target. The solution

sets D1 = [d1
1, · · · ,d

1
K ], D2 = [d2

1, · · · ,d
2
K ] and D3 =

[d3
1, · · · ,d

3
K ] estimated via ESPRIT using the three group

subarrays are used to carry out a consistency check. This

check is a column-to-column comparison and each column

only contains a single correct target solution. Therefore, the

minimum difference solution of all sets would be chosen as the

final angle estimation. In practice, the noise level does affect

the subarray estimation accuracy, and the different values of

∆ provide slightly different estimation results. Therefore, the

consistent results in the three solution sets will be taken as the

mean value. The targets obtained by consistency comparison

and averaging between the three solution sets are denoted as

θ̂k for k = 1, · · · ,K. Algorithm 1 summarizes these steps of

the proposed coprime FoV array angle unfolding for sparse

ESPRIT (CoFoV-SESPRIT).

Algorithm 1: Coprime FoV Array Angle Unfolding

for Sparse ESPRIT (CoFoV-SESPRIT)

Data: K, L, Ŷs, ∆1, ∆2, ∆3

Result: θ̂ =
[

θ̂1, ..., θ̂K

]

while i ≤ 3 do

R̂ci =
1
L

L
∑

t=1
yci(t)ŷ

H
ci (t),

Do eigendecomposition of R̂ci,

Find Φ̂ or Ψ̂,

Get solution set Di,
end

while k ≤ K do
indk = mink (abs [D1 −D2,D2 −D3,D1 −D3])
θ̂k = mean [D1(indk),D2(indk),D3(indk)]

end

IV. NUMERICAL RESULTS

We consider a coprime FoV array, as shown in Fig. 2, which

consists of 11 elements and has the same aperture as a ULA

containing 30 elements with half-wavelength element spacing.

There are total L = 400 snapshots. As shown in Fig. 2 (b),

the first group of subarray sets has ∆1 = 5.5λ, corresponding

to visible region of [−5.21◦, 5.21◦]. The second one, shown

in Fig. 2 (c), has ∆2 = 4λ, corresponding to visible region of

[−7.18◦, 7.18◦]. The last one, shown in Fig. 2 (d), has ∆3 =
1.5λ, corresponding to visible region of [−19.47◦, 19.47◦].
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Fig. 3. (a-b) Hit rate and RMSE comparison with ∆θ = 9.29◦.

To evaluate the DoA estimation performance of the CoFoV-

SESPRIT, we apply the hit or missing criterion [30] to examine

the DoA estimation successful rate under different input SNR

values. Here, a hit denotes that the absolute error of the esti-

mated DoA is within the 3-dB bandwidth angular resolution.

For comparison, we also show the estimation hit rate of the

classical ESPRIT on ULA with 11 elements and element

spacing of half wavelength. The ULA with 11 elements has
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3-dB beamwidth of ∆θ = 9.29◦. We placed two targets with

normalized reflection coefficients of s1 = 1 and s2 = 1, which

remain unchanged during the processing interval. One angle is

drawn uniformly at random from [−90◦, 90◦], and the second

angle is separated by a value ∆θ chosen from [9.29◦, 2◦].
For each input SNR selected from 13 uniformly-spaced values

in the interval [−20, 40] dB, we perform 5, 000 Monte Carlo

simulations. The root-mean-squared error (RMSE), defined as

RMSE =
√

∑MC

i=1(θ̂i − θi)2/Mc using Mc independent trials,

is used as the performance metric to measure the deviation of

the estimation result θ̂ from the ground truth θ.
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Fig. 4. (a-b) Hit rate and RMSE comparison with ∆θ = 2◦.

When angle separation is relative large, e.g., ∆θ = 9.29◦, as

Fig. 3 (a)(b) shows, the performance of the CoFoV-SESPRIT

is slightly worse than the conventional ESPRIT at low SNRs.

This is mainly due to the angle unfolding error in the CoFoV-

SESPRIT when SNRs are low. At high SNRs, the hit rate

and RMSE of CoFoV-SESPRIT is close to the conventional

ESPRIT.

When ∆θ is small, e.g., ∆θ = 2◦, as shown in Fig. 4 (a)(b),

the CoFoV-SESPRIT has better performance in hit rate and

RMSE comparison, which is expected since the proposed SLA

has a large aperture.

V. CONCLUSIONS

We developed a coprime FoV assisted angle unfolding

approach for sparse ESPRIT to resolve the DoA estimation

ambiguities when applying ESPRIT to general sparse linear

arrays. The CoFoV-SESPRIT algorithm provides more degree-

of-freedom in designing sparse linear arrays to achieve a large

aperture, reducing the mutual coupling among the antenna

elements and further bringing down the system cost. The

simulation results demonstrated that the CoFoV-SESPRIT on

SLAs has better performance in resolving spatially closed

targets than conventional ESPRIT on a ULA with the same

number of antenna elements. The simulation also confirmed

that there is a slight performance degradation in CoFoV-

SESPRIT at low SNRs due to angle unfolding errors.
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