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Abstract—Time-division multiplexing (TDM) is an easy way to achieve
waveform orthogonality in automotive multiple-input multiple-output
(MIMO) radar to synthesize a large virtual array to achieve high-
resolution radar imaging for autonomous driving. Under TDM, only
one transmit antenna is scheduled to transmit at each time slot. As
a result, the maximum unambiguous detectable Doppler or radial speed
is reduced by a factor of the number of transmit antennas. Additionally,
there is phase migration in the array response for moving targets that
needs to be compensated before angle estimation. The staggered pulse
repetition intervals (PRIs) in consecutive frames can be used for Doppler
unfolding. However, it has high computational complexity in pairing
multiple targets. In this paper, we propose a fast and robust solution using
a one-dimensional convolutional neural network to unfold the Doppler
estimation in automotive TDM MIMO radar. The input of the neural
network is the beam vector of the virtual array and the output is the
unfolded velocity estimate for phase compensation. Extensive numerical
experiments show that accurate Doppler estimation is achieved at a
reasonable signal-to-noise ratio (SNR). Radar field experiments using
Texas Instruments imaging radar support our theoretical investigations.

Index Terms—automotive radar, MIMO radar, Doppler unfolding, deep
learning, autonomous driving

I. INTRODUCTION

The automotive radar sensor is a fundamental part of advanced
driver assistance systems and autonomous vehicles largely because of
its low cost, ability to sense during inclement weather, and immunity
to poor visibility conditions [1]–[6]. Most automotive radar systems
employ frequency-modulated continuous-wave (FMCW) transmit sig-
nals at the millimeter-wave band to achieve low-cost high-resolution
sensing for complex functions during autonomous driving, such as
automatic emergency braking, blind-spot detection, and adaptive
cruise control [7], [8].

Multiple-input multiple-output (MIMO) radar technology is a cost-
effective method and has been widely used to synthesize a large
virtual array aperture for higher angular resolution using a small
number of transmit and receive antennas [3], [9]–[11]. MIMO radar
technology relies on the waveform orthogonality of the transmitted
signals to enable separation at the receiving end. Waveform orthogo-
nality can be achieved using various methods, such as time-division
multiplexing (TDM), Doppler-division multiplexing (DDM), and
frequency-division multiplexing (FDM) [3]. TDM is a simple way to
achieve waveform orthogonality by scheduling one transmit antenna
to transmit at each time slot. However, the maximum unambiguous
detectable Doppler or equivalently the radial velocity is reduced
by a factor of the number of transmit antennas. For imaging radar
synthesized with a large number of transmit antennas, this problem
becomes critical. Unfortunately, due to the reduction in maximum
unambiguous detectable Doppler, moving targets with relatively high
speeds are estimated with ambiguity. In addition, a phase migration
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is introduced for moving objects due to the switching delays among
the transmit antennas from chirp to chirp, yielding distorted radar
angular spectrum which would result in blurred radar imaging [3],
[12].

Unlike cameras, which can overcome the blurred image issue by
increasing frame per second, TDM MIMO radars require special
antenna geometries or adaptive signal processing techniques to deal
with phase migration. Phase error can be estimated using overlapping
elements in the virtual aperture [13]. If two virtual elements corre-
sponding to different transmitters share the same virtual position,
the only phase difference between them in an ideal situation is that
motion-induced phase error. However, this approach requires redun-
dancy of virtual elements, which increases hardware cost. In addition,
this approach suffers from low signal-to-noise ratio (SNR) situations.
It was shown in [14] that overlapping elements are unnecessary
and the motion compensation can be resolved via applying adaptive
Discrete Fourier transform (DFT) on signals corresponding to dif-
ferent transmitters. However, such approach may cause ambiguities
in the Doppler domain, and waveform design is required to achieve
Doppler dealiasing. An approach with a staggered TDM configuration
combined with Chinese remainder theorem (CRT) was proposed in
[15] to unfold Doppler ambiguities. The transmitter is scheduled
to transmit two consecutive frames with coprime pulse repetition
intervals (PRIs), leading to different max unambiguous detectable
velocities, respectively. With such different configurations, CRT is
applied to identify the true Doppler estimation among all possible
unfolded Doppler candidates under these two frames. This approach
is robust, however, the paring process is computationally expensive.

In this paper, we propose a deep neural network approach to
unfold the Doppler estimation in automotive TDM MIMO radar. Our
innovations lie in the efficiency and robustness that are not enjoyed
by traditional approaches that either need special staggered PRI or
array configurations.

II. SYSTEM MODEL OF AUTOMOTIVE MIMO RADAR

Frequency-modulated continuous-waveform (FMCW) is used in
automotive radars, offering high-range resolution at low-cost that is
unmatched by contemporary pulse-Doppler radars. In this section,
we present FMCW radar principles and the system model of auto-
motive MIMO radar to synthesize a large virtual array, followed by
discussion of TDM MIMO radar challenges.

A. FMCW Radar

The transmit frequency of FMCW radar, fT (t), changes linearly
with time, i.e.,

fT (t) = fc +
B

T
t, (1)

where fc, B, T are carry frequency, bandwidth and chirp duration,
respectively. The phase φT (t) of the transmitted signal could be
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obtained after integration as φT (t) = 2π
´ t

−T/2
fT (t) dt. The

noiseless received signal is a delayed version of transmit signal. For
a target at a range of R with a radial velocity of v, the round-trip
delay can be expressed as τ = 2(R + vt)/c. The received signal is
mixed with the transmit signal, and the output of the mixer is called
beat signal, whose phase could be approximated as

φB(t) = 2π

[
2fcR

c
+

(
2fcv

c
+

2BR

Tc

)
t

]
, (2)

where the beat frequency is fb = fR+fD with fR = 2BR
Tc

being the
range frequency and fD = 2fcv

c
being the Doppler frequency. The

beat signal typically goes through a bandpass filter to compensate
the gain for targets in distance to improve the radar dynamic range,
followed by an analog-to-digital converter (ADC), whose sampling
rate is greater than twice of maximum beat frequency fmax

b . Range
and Doppler information of the target could be obtained by applying
fast Fourier transforms (FFTs) along fast-time and slow-time.
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Fig. 1: Illustration of waveform orthogonality through TDM.

B. Automotive MIMO Radar and Waveform Orthogonality

MIMO radar can synthesize a large virtual array for angle estima-
tion using a small number of transmit and multiple receive antennas
[3], [9], thus has been adopted in automotive radar design [3]–[5].
Digital beamforming [16], or super-resolution algorithms, such as
MUSIC [17], ESPRIT [18], compressive sensing [19], can be applied
on the virtual array to estimate the DOA.

In automotive MIMO radar, it is desired to transmit orthogonal
FMCW sequences so that at receiving side, the contribution of each
transmit antenna can be extracted. There are different ways to achieve
waveform orthogonality in MIMO radar, such as DDM and TDM [3].
In DDM, waveform orthogonality is achieved in the slow-time do-
main by multiplying a phase code on each transmitted FMCW chirp.
At receive side, the contribution of each transmitter can be either
shifted to higher Doppler frequency or treated as random noise by
applying a slow-time Doppler demodulation after range FFT. DDM
allows all transmit antennas to transmit simultaneously. However,
it either reduces the maximum unambiguous detectable Doppler or
masks objects with low radar cross-section by the waveform residual
from other transmit antennas [3].

Under the TDM scheme, only one transmit antenna is selected to
transmit at each time. A signal processing example of a TDM MIMO

radar with Nt = 2 transmit antennas and Nr = 4 receive antennas
is shown in Fig. 1. Assume there are Nslow chirps transmitted in
one coherent processing interval (CPI) and the number of ADC
samples is Nfast. All odd chirps (blue) are transmitted by the first
transmit antenna; all even chirps (red) are transmitted by the second
transmit antenna. At each receive antenna, the radar data matrix can
be assembled into two matrices corresponding to odd and even chirp
sequences, respectively. Therefore, a radar data cube with a dimension
of Nslow/Nt ×Nfast × (NtNr) could be obtained from the original
Nslow×Nfast×Nr data cube. Due to its simplicity in implementation,
in this paper, we adopt TDM to achieve waveform orthogonality.

Fig. 2: Illustration of Doppler folding/aliasing. The FMCW radar
simulator is configurated to have a maximum unambiguous detectable
radial speed, vmax = 3.6 m/s. Range-Doppler map with three targets
at 100, 75, 50 meters with 0, 2vmax, −2vmax. Circle markers show
the targets’ ground truth parameters.

C. Challenges of TDM MIMO Radar

1) Reduced Maximum Unambiguous Detectable Velocity: The
maximum unambiguous detectable velocity of automotive radar is

vmax = c/(4fcTPRI), (3)

where c is the speed of light, while fc and TPRI denote the carrier
frequency and PRI, respectively. In automotive TDM MIMO radar,
since only one transmit antenna is scheduled to transmit pulse at each
time slot, TPRI of each transmit antenna is enlarged by the number
of transmit antenna, Nt. As a result, vmax is reduced by Nt times.

2) Doppler Aliasing: For FMCW radar, when the targets move
with velocity beyond vmax, they appear on the range-Doppler
map with aliasing. This phenomenon is also known as Doppler
folding, since targets are folded back at incorrect locations within
[−vmax, vmax]. We illustrate this problem in Fig 2. An FMCW radar
simulator is used to generate radar data for three targets with different
range and Doppler information. Although those three targets have
different velocities, they share the same Doppler/velocity estimation
on range-Doppler map due to Doppler folding. In this case, the
velocity information of the object cannot be estimated accurately.
For example, an object moving with aliasing velocity, such as 2vmax

or −2vmax, could be detected as a stationary object.
3) Phase Migration: The scheduling delay, ∆t, between different

transmit antennas would cause phase migration for moving targets
between different chirps, i.e.,

ϕ = (4π/λ)v∆t. (4)
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Fig. 3: The pipeline of Doppler unfolding using 1D CNN in automotive TDM MIMO radar.

Fig. 4: The TI imaging radar. Four AWR2243 radar transceivers are
cascaded together, providing 9 transmit and 16 receive antennas in
the horizontal direction, enabling the synthesis of 86 unique virtual
array elements with half-wavelength spacing. Note 58 virtual array
elements are overlapped.

The phase migration creates a distortion in the virtual array
beampattern, which may lead to inaccurate angle finding. We show
this phenomenon via simulation with an array configuration, shown
in Fig. 4, the same as Texas Instruments (TI) imaging radar [20].
Assume there is a moving target at 20◦ with v = 10 m/s. Fig. 5
(a) plots the angle spectrum obtained from the virtual array without
velocity compensation. In order to remove phase migration, for every
moving target, a compensation value e−jϕ needs to be multiplied
along the virtual array before angle finding. Fig. 5 (b) shows the
correct angle spectra after compensation.
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Fig. 5: Angle spectra of a moving target with a velocity of 10 m/s and
azimuth angle of 20◦: (a) before and (b) after phase compensation.
The radar is configured to select 9 transmit and 16 receive antennas
with a chirp duration of 50 µs.

III. DOPPLER UNFOLDING USING DEEP NEURAL NETWORK

Theoretically, the velocity can be unfolded an infinite number of
times. Fortunately, the typical velocity range in autonomous driving
is within [−120, 120] miles per hour. Therefore, when vmax is
large enough, unfolding a limited number of times is sufficient. For
example, the set of 9 possible unfolded velocities could be expressed
as

S = {v − 4× (2vmax), · · · , v, · · · , v + 4× (2vmax)} . (5)

The n-th element of the virtual uniform linear array with half-
wavelength spacing corresponding to m-th transmit antenna can be
expressed as

an = e

(
2π(n−1)d

λ
sin θ+(m−1)ϕ

)
+ noise, (6)

where ϕ is the phase migration defined in equation (4). Therefore,
the phase difference along the virtual array is a feature that can be
extracted for Doppler unfolding. We utilize a convolutional neural
network (CNN) to unfold the Doppler estimation in automotive TDM
MIMO radar. The neural network is first pre-trained with simulated
data and then transfer-learning is carried out on real data. The
same antenna configuration as the TI imaging radar is considered
to generate the simulated data, which consists of beam vectors of
virtual arrays obtained after range FFT followed by Doppler FFT.
The dataset has 9 classes, where label 0 is the first velocity candidate
and label 8 is the last velocity candidate.

The pipeline of Doppler unfolding using one-dimensional (1D)
CNN in automotive TDM MIMO radar is shown in Fig. 3. First,
the beam vector of the virtual array is selected from the three-
dimensional radar data cube along the channel dimension. Next, in
order to reduce the amount of data required for training, a signal
preprocessing step that removes the angle-dependent phase in the
virtual array beam vector is applied. The angle-dependent phase is
derived from the phase difference using subarray, i.e., array elements
corresponding to the same transmit antenna. Therefore, the input
data for the Doppler unfolding network only contains motion-induced
phase error, mutual coupling, and noise. Third, after the preprocessing
step, phase features in the virtual array beam vector are extracted
using a 1D CNN. The network consisting of three CNN layers and
one fully connected layer, is proposed to classify virtual arrays such
that the correct velocity can be estimated. The output of the network
is the estimated velocity, which is then used to compensate for the
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phase migration in the beam vector of the virtual array for accurate
angle finding.

IV. NUMERICAL RESULTS AND RADAR FIELD TESTS

A. Simulated Dataset & Real-World Dataset

To train and test the Doppler unfolding network, we create a
simulated dataset and a real-world dataset. The simulated dataset is
evenly distributed with 9 classes and contains 46, 000 beam vectors
with different targets’ radial speeds and directions of arrival using
the same array geometry as TI cascade imaging radar. Moreover,
field experiments are performed using TI imaging radar system on a
2021 Lexus RX450h vehicle platform shown in Fig. 6 (a). LiDAR and
stereo cameras are used to provide velocity ground truth. For the real-
world dataset, total 244, 140 beam vectors have been extracted from
1, 700 frames of the 3D radar data cube. The SNR of the beam vector
is estimated as SNR = 10 log10(S

2/N2), where S denotes signal
amplitude and N denotes noise floor from range-Doppler spectrum
of each channel. Range-Doppler two-dimensional FFTs yield a signal
processing gain [3] of 10 log10(NfastNslow) = 42.14 dB, where
Nfast = 256 and Nslow = 64 are the number of samples in fast-
time and slow-time, respectively. The dataset class distribution and
SNR distribution are shown in Fig. 6 (c) and (d).
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Fig. 6: (a) Multi-modal sensor configuration on a 2021 Lexus RX450h
vehicle platform for field experiments.; (b) Real-World Dataset class
distribution.; (c) Real-World Dataset SNR distribution.

B. Doppler Unfolding Network Performance Evaluation

The Doppler unfolding network is first trained with the simulated
dataset. The performance is evaluated using multiple simulated test
sets with different noise levels. The confusion matrix of three
simulated test sets with 10dB and 15dB respectively is shown in
Fig.7.

To increase the network performance on real-world data, we take
a small training set that contains 900 samples with evenly distributed

(a) (b)

Fig. 7: Confusion matrix under different SNR configurations.

classes from the real-world dataset to train the pre-trained network.
The proposed model predicts with 93.46% accuracy. The confusion
matrix of the real-world dataset is shown in Fig. 8.

Fig. 8: Confusion Matrix of Real-World Dataset.

C. Examples of Radar Imaging With and Without Compensation

Radar bird’s-eye-view (BEV) examples with and without compen-
sation under various driving scenarios are shown in Fig. 9. Here,
the radar BEV is first obtained as range-azimuth spectra in Polar
coordinate and then transformed into Cartesian coordinate. It is shown
that when driving at high speeds on a highway, radar BEVs are
severely affected by motion-induced phase errors. The blur effect is
significantly suppressed after compensation with the correct velocity
predicted by the proposed Doppler unfolding network. For example,
after compensation, the false targets due to the high sidelobes
introduced by the motion are successfully mitigated. We also include
some intersection examples, where most targets are stationary or with
low velocities and thus no compensation is required. In summary, the
“motion-blur” effect of automotive TDM MIMO radar imaging can
be successfully suppressed under the proposed deep learning-aided
signal processing chain for various driving scenarios.

V. CONCLUSION

In this work, we developed a deep learning approach for solving
the Doppler unfolding issue in automotive TDM MIMO radar. A
simulated and a real-world dataset were created for training and
testing the Doppler unfolding network. We have shown that our
Doppler unfolding network achieves 93.46% accuracy on the real-
world dataset, and is able to robustly generate undistorted radar BEVs
containing rich object features under various driving scenarios.
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Fig. 9: Radar imaging examples. Radar BEVs are shown in the first column (before velocity compensation) and the second column (after
velocity compensation via Doppler unfolding network). LiDAR point clouds are shown in BEV format in the third column. Due to limited
space, only the image from the left camera is shown in the fourth column.
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